A uniqueness result for scattering by infinite rough surfaces

[thumbnail of s0036139996309722.pdf]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Chandler-Wilde, S. N. orcid id iconORCID: https://orcid.org/0000-0003-0578-1283 and Zhang, B. (1998) A uniqueness result for scattering by infinite rough surfaces. SIAM Journal on Applied Mathematics (SIAP), 58 (6). pp. 1774-1790. ISSN 0036-1399 doi: 10.1137/S0036139996309722

Abstract/Summary

Consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane with an unbounded, piecewise Lyapunov boundary. This problem models time-harmonic electromagnetic scattering in transverse magnetic polarization by one-dimensional rough, perfectly conducting surfaces. A radiation condition is introduced for the problem, which is a generalization of the usual one used in the study of diffraction by gratings when the solution is quasi-periodic, and allows a variety of incident fields including an incident plane wave to be included in the results obtained. We show in this paper that the boundary value problem for the scattered field has at most one solution. For the case when the whole boundary is Lyapunov and is a small perturbation of a flat boundary we also prove existence of solution and show a limiting absorption principle.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/32653
Identification Number/DOI 10.1137/S0036139996309722
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Society for Industrial and Applied Mathematics
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar