Search from over 60,000 research works

Advanced Search

Intensification of winter transatlantic aviation turbulence in response to climate change

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Williams, P. D. orcid id iconORCID: https://orcid.org/0000-0002-9713-9820 and Joshi, M. M. (2013) Intensification of winter transatlantic aviation turbulence in response to climate change. Nature Climate Change, 3. pp. 644-648. ISSN 1758-6798 doi: 10.1038/nclimate1866

Abstract/Summary

Atmospheric turbulence causes most weather-related aircraft incidents1. Commercial aircraft encounter moderate-or-greater turbulence tens of thousands of times each year worldwide, injuring probably hundreds of passengers (occasionally fatally), costing airlines tens of millions of dollars and causing structural damage to planes1, 2, 3. Clear-air turbulence is especially difficult to avoid, because it cannot be seen by pilots or detected by satellites or on-board radar4, 5. Clear-air turbulence is linked to atmospheric jet streams6, 7, which are projected to be strengthened by anthropogenic climate change8. However, the response of clear-air turbulence to projected climate change has not previously been studied. Here we show using climate model simulations that clear-air turbulence changes significantly within the transatlantic flight corridor when the concentration of carbon dioxide in the atmosphere is doubled. At cruise altitudes within 50–75° N and 10–60° W in winter, most clear-air turbulence measures show a 10–40% increase in the median strength of turbulence and a 40–170% increase in the frequency of occurrence of moderate-or-greater turbulence. Our results suggest that climate change will lead to bumpier transatlantic flights by the middle of this century. Journey times may lengthen and fuel consumption and emissions may increase. Aviation is partly responsible for changing the climate9, but our findings show for the first time how climate change could affect aviation.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/32621
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Nature Publishing Group
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar