Search from over 60,000 research works

Advanced Search

Tropical Atlantic variability modes (1979–2002). Part I: Time-evolving SST modes related to West African rainfall

[thumbnail of Polo_etal_JClimate2008[1].pdf]
Preview
Polo_etal_JClimate2008[1].pdf - Published Version (3MB) | Preview
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Polo, I., Rodríguez-Fonseca, B., Losada, T. and García-Serrano, J. (2008) Tropical Atlantic variability modes (1979–2002). Part I: Time-evolving SST modes related to West African rainfall. Journal of Climate, 21 (24). pp. 6457-6475. ISSN 1520-0442 doi: 10.1175/2008JCLI2607.1

Abstract/Summary

This work presents a description of the 1979–2002 tropical Atlantic (TA) SST variability modes coupled to the anomalous West African (WA) rainfall during the monsoon season. The time-evolving SST patterns, with an impact on WA rainfall variability, are analyzed using a new methodology based on maximum covariance analysis. The enhanced Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset, which includes measures over the ocean, gives a complete picture of the interannual WA rainfall patterns for the Sahel dry period. The leading TA SST pattern, related to the Atlantic El Niño, is coupled to anomalous precipitation over the coast of the Gulf of Guinea, which corresponds to the second WA rainfall principal component. The thermodynamics and dynamics involved in the generation, development, and damping of this mode are studied and compared with previous works. The SST mode starts at the Angola/Benguela region and is caused by alongshore wind anomalies. It then propagates westward via Rossby waves and damps because of latent heat flux anomalies and Kelvin wave eastward propagation from an off-equatorial forcing. The second SST mode includes the Mediterranean and the Atlantic Ocean, showing how the Mediterranean SST anomalies are those that are directly associated with the Sahelian rainfall. The global signature of the TA SST patterns is analyzed, adding new insights about the Pacific– Atlantic link in relation to WA rainfall during this period. Also, this global picture suggests that the Mediterranean SST anomalies are a fingerprint of large-scale forcing. This work updates the results given by other authors, whose studies are based on different datasets dating back to the 1950s, including both the wet and the dry Sahel periods.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/32382
Item Type Article
Refereed Yes
Divisions Interdisciplinary Research Centres (IDRCs) > Walker Institute
Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Meteorological Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar