Search from over 60,000 research works

Advanced Search

On the seasonal onset of polar mesospheric clouds and the breakdown of the stratospheric polar vortex in the Southern Hemisphere

[thumbnail of Karlsson2011.pdf]
Preview
Karlsson2011.pdf - Published Version (3MB) | Preview
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Karlsson, B., Randall, C. E., Shepherd, T. G. orcid id iconORCID: https://orcid.org/0000-0002-6631-9968, Harvey, V. L., Lumpe, J., Nielsen, K., Bailey, S. M., Hervig, M. and Russell, J. M. (2011) On the seasonal onset of polar mesospheric clouds and the breakdown of the stratospheric polar vortex in the Southern Hemisphere. Journal of Geophysical Research, 116. D18107. ISSN 0148-0227 doi: 10.1029/2011JD015989

Abstract/Summary

Southern Hemisphere (SH) polar mesospheric clouds (PMCs), also known as noctilucent clouds, have been observed to be more variable and, in general, dimmer than their Northern Hemisphere (NH) counterparts. The precise cause of these hemispheric differences is not well understood. This paper focuses on one aspect of the hemispheric differences: the timing of the PMC season onset. Observations from the Aeronomy of Ice in the Mesosphere satellite indicate that in recent years the date on which the PMC season begins varies much more in the SH than in the NH. Using the Canadian Middle Atmosphere Model, we show that the generation of sufficiently low temperatures necessary for cloud formation in the SH summer polar mesosphere is perturbed by year‐to‐year variations in the timing of the late‐spring breakdown of the SH stratospheric polar vortex. These stratospheric variations, which persist until the end of December, influence the propagation of gravity waves up to the mesosphere. This adds a stratospheric control to the temperatures in the polar mesopause region during early summer, which causes the onset of PMCs to vary from one year to another. This effect is much stronger in the SH than in the NH because the breakdown of the polar vortex occurs much later in the SH, closer in time to the PMC season.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/31559
Item Type Article
Refereed Yes
Divisions No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar