Small time two-sided LIL behavior for Lévy processes at zero

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Savov, M. (2009) Small time two-sided LIL behavior for Lévy processes at zero. Probability Theory and Related Fields, 144 (1-2). pp. 79-98. ISSN 1432-2064 doi: 10.1007/s00440-008-0142-1

Abstract/Summary

We wish to characterize when a Lévy process X t crosses boundaries b(t), in a two-sided sense, for small times t, where b(t) satisfies very mild conditions. An integral test is furnished for computing the value of sup t→0|X t |/b(t) = c. In some cases, we also specify a function b(t) in terms of the Lévy triplet, such that sup t→0 |X t |/b(t) = 1.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/29300
Identification Number/DOI 10.1007/s00440-008-0142-1
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Springer
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar