Dehn, S., Castelletto, V., Hamley, I. W. ORCID: https://orcid.org/0000-0002-4549-0926 and Perrier, S.
(2012)
Altering peptide fibrillization by polymer conjugation.
Biomacromolecules, 13 (9).
pp. 2739-2747.
ISSN 1525-7797
doi: 10.1021/bm3007117
Abstract/Summary
A strategy is presented that exploits the ability of synthetic polymers of different nature to disturb the strong selfassembly capabilities of amyloid based β-sheet forming peptides. Following a convergent approach, the peptides of interest were synthesized via solid-phase peptide synthesis (SPPS) and the polymers via reversible addition−fragmentation chain transfer (RAFT) polymerization, followed by a copper(I) catalyzed azide− alkyne cycloaddition (CuAAC) to generate the desired peptide− polymer conjugates. This study focuses on a modified version of the core sequence of the β-amyloid peptide (Aβ), Aβ(16−20) (KLVFF). The influence of attaching short poly(Nisopropylacrylamide) and poly(hydroxyethylacrylate) to the peptide sequences on the self-assembly properties of the hybrid materials were studied via infrared spectroscopy, TEM, circular dichroism and SAXS. The findings indicate that attaching these polymers disturbs the strong self-assembly properties of the biomolecules to a certain degree and permits to influence the aggregation of the peptides based on their β-sheets forming abilities. This study presents an innovative route toward targeted and controlled assembly of amyloid-like fibers to drive the formation of polymeric nanomaterials.
Altmetric Badge
Item Type | Article |
URI | https://reading-clone.eprints-hosting.org/id/eprint/29261 |
Item Type | Article |
Refereed | Yes |
Divisions | Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry |
Publisher | American Chemical Society |
Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record