Search from over 60,000 research works

Advanced Search

Predicting outliers in ensemble forecasts

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Siegert, S., Bröcker, J. and Kantz, H. (2011) Predicting outliers in ensemble forecasts. Quarterly Journal of the Royal Meteorological Society, 137 (660). pp. 1887-1897. ISSN 1477-870X doi: 10.1002/qj.868

Abstract/Summary

An ensemble forecast is a collection of runs of a numerical dynamical model, initialized with perturbed initial conditions. In modern weather prediction for example, ensembles are used to retrieve probabilistic information about future weather conditions. In this contribution, we are concerned with ensemble forecasts of a scalar quantity (say, the temperature at a specific location). We consider the event that the verification is smaller than the smallest, or larger than the largest ensemble member. We call these events outliers. If a K-member ensemble accurately reflected the variability of the verification, outliers should occur with a base rate of 2/(K + 1). In operational forecast ensembles though, this frequency is often found to be higher. We study the predictability of outliers and find that, exploiting information available from the ensemble, forecast probabilities for outlier events can be calculated which are more skilful than the unconditional base rate. We prove this analytically for statistically consistent forecast ensembles. Further, the analytical results are compared to the predictability of outliers in an operational forecast ensemble by means of model output statistics. We find the analytical and empirical results to agree both qualitatively and quantitatively.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/29160
Item Type Article
Refereed Yes
Divisions No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Uncontrolled Keywords forecast probability, predictability, Talagrand diagrams, ROC curves, skill scores
Publisher Royal Meteorological Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar