The asymptotic behavior of densities related to the supremum of a stable process

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Doney, R.A. and Savov, M.S. (2010) The asymptotic behavior of densities related to the supremum of a stable process. Annals of Probability, 38 (1). pp. 316-326. ISSN 2168-894X doi: 10.1214/09-AOP479

Abstract/Summary

If X is a stable process of index α∈(0, 2) whose Lévy measure has density cx−α−1 on (0, ∞), and S1=sup0<t≤1Xt, it is known that P(S1>x)∽Aα−1x−α as x→∞ and P(S1≤x)∽Bα−1ρ−1xαρ as x↓0. [Here ρ=P(X1>0) and A and B are known constants.] It is also known that S1 has a continuous density, m say. The main point of this note is to show that m(x)∽Ax−(α+1) as x→∞ and m(x)∽Bxαρ−1 as x↓0. Similar results are obtained for related densities.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/29113
Identification Number/DOI 10.1214/09-AOP479
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Institute of Mathematical Statistics
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar