Staphylococcal extracellular adherence protein induces platelet activation by stimulation of thiol isomerases

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Bertling, A., Niemann, S., Hussain, M., Holbrook, L., Stanley, R. G., Brodde, M. F., Pohl, S., Schifferdecker, T., Roth, J., Jurk, K., Müller, A., Lahav, J., Peters, G., Heilmann, C., Gibbins, J. M. orcid id iconORCID: https://orcid.org/0000-0002-0372-5352 and Kehrel, B. E. (2012) Staphylococcal extracellular adherence protein induces platelet activation by stimulation of thiol isomerases. Arteriosclerosis Thrombosis and Vascular Biology, 32. pp. 1979-1990. ISSN 1079-5642 doi: 10.1161/ATVBAHA.112.246249

Abstract/Summary

OBJECTIVE: Staphylococcus aureus can induce platelet aggregation. The rapidity and degree of this correlates with the severity of disseminated intravascular coagulation, and depends on platelet peptidoglycans. Surface-located thiol isomerases play an important role in platelet activation. The staphylococcal extracellular adherence protein (Eap) functions as an adhesin for host plasma proteins. Therefore we tested the effect of Eap on platelets. METHODS AND RESULTS: We found a strong stimulation of the platelet-surface thiol isomerases protein disulfide isomerase, endoplasmic reticulum stress proteins 57 and 72 by Eap. Eap induced thiol isomerase-dependent glycoprotein IIb/IIIa activation, granule secretion, and platelet aggregation. Treatment of platelets with thiol blockers, bacitracin, and anti-protein disulfide isomerase antibody inhibited Eap-induced platelet activation. The effect of Eap on platelets and protein disulfide isomerase activity was completely blocked by glycosaminoglycans. Inhibition by the hydrophobic probe bis(1-anilinonaphthalene 8-sulfonate) suggested the involvement of hydrophobic sites in protein disulfide isomerase and platelet activation by Eap. CONCLUSIONS: In the present study, we found an additional and yet unknown mechanism of platelet activation by a bacterial adhesin, involving stimulation of thiol isomerases. The thiol isomerase stimulatory and prothrombotic features of a microbial secreted protein are probably not restricted to S aureus and Eap. Because many microorganisms are coated with amyloidogenic proteins, it is likely that the observed mechanism is a more general one.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/28043
Identification Number/DOI 10.1161/ATVBAHA.112.246249
Refereed Yes
Divisions Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
Life Sciences > School of Biological Sciences > Biomedical Sciences
Uncontrolled Keywords Platelets; thiol; thiol isomerase; Staphylococcus; EAP
Publisher Lippincott, Williams & Wilkins
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar