Search from over 60,000 research works

Advanced Search

Evidence both L-type and non-L-type voltage-dependent calcium channels contribute to cerebral artery vasospasm following loss of NO in the rat

[thumbnail of 25803Cadiovasc_pharmacoMay26_CG_track_changes_off.pdf]
Preview
[thumbnail of Diagrams]
25803figuresdraftt-typeOCT09.ppt - Supplemental Material (1MB)
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

McNeish, A., Altayo-Jimenez, F. and Garland, C. J. (2010) Evidence both L-type and non-L-type voltage-dependent calcium channels contribute to cerebral artery vasospasm following loss of NO in the rat. Vascular Pharmacology, 53 (3-4). pp. 151-159. ISSN 1537-1891 doi: 10.1016/j.vph.2010.06.002

Abstract/Summary

We recently found block of NO synthase in rat middle cerebral artery caused spasm, associated with depolarizing oscillations in membrane potential (Em) similar in form but faster in frequency (circa 1 Hz) to vasomotion. T-type voltage-gated Ca2+ channels contribute to cerebral myogenic tone and vasomotion, so we investigated the significance of T-type and other ion channels for membrane potential oscillations underlying arterial spasm. Smooth muscle cell membrane potential (Em) and tension were measured simultaneously in rat middle cerebral artery. NO synthase blockade caused temporally coupled depolarizing oscillations in cerebrovascular Em with associated vasoconstriction. Both events were accentuated by block of smooth muscle BKCa. Block of T-type channels or inhibition of Na+/K+-ATPase abolished the oscillations in Em and reduced vasoconstriction. Oscillations in Em were either attenuated or accentuated by reducing [Ca2+]o or block of KV, respectively. TRAM-34 attenuated oscillations in both Em and tone, apparently independent of effects against KCa3.1. Thus, rapid depolarizing oscillations in Em and tone observed after endothelial function has been disrupted reflect input from T-type calcium channels in addition to L-type channels, while other depolarizing currents appear to be unimportant. These data suggest that combined block of T and L-type channels may represent an effective approach to reverse cerebral vasospasm.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/25803
Item Type Article
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Division of Pharmacology
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar