DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. ORCID: https://orcid.org/0000-0001-6828-3543 and Brown, J. H.
(2010)
Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life.
Proceedings of the National Academy of Sciences of the United States of America, 107 (29).
pp. 12941-12945.
ISSN 0027-8424
doi: 10.1073/pnas.1007783107
Abstract/Summary
The diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations inmetabolicdesign.Hereweshowthat thescalingsofmetabolic rate, population growth rate, and production efficiency with body size have changed across the evolutionary transitions.Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly inmetazoans, so Kleiber’s 3/4 power scaling law does not apply universally across organisms. The scaling ofmaximum population growth rate shifts from positive in prokaryotes to negative in protists and metazoans, and the efficiency of production declines across these groups.Major changes inmetabolic processes duringtheearlyevolutionof life overcameexistingconstraints, exploited new opportunities, and imposed new constraints. The 3.5 billion year history of life on earth was characterized by
Altmetric Badge
Item Type | Article |
URI | https://reading-clone.eprints-hosting.org/id/eprint/25651 |
Item Type | Article |
Refereed | Yes |
Divisions | Life Sciences > School of Biological Sciences > Ecology and Evolutionary Biology |
Uncontrolled Keywords | energetic constraints; production efficiency; rmax; endosymbiosis; multicellularity |
Publisher | National Academy of Sciences |
Download/View statistics | View download statistics for this item |
University Staff: Request a correction | Centaur Editors: Update this record