Search from over 60,000 research works

Advanced Search

Impact of resolution on the tropical pacific circulation in a matrix of coupled models

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Roberts, M. J., Clayton, A., Demory, M.-E., Donners, J., Vidale, P.L. orcid id iconORCID: https://orcid.org/0000-0002-1800-8460, Norton, W., Shaffrey, L. orcid id iconORCID: https://orcid.org/0000-0003-2696-752X, Stevens, D. P., Stevens, I., Wood, R. A. and Slingo, J. (2009) Impact of resolution on the tropical pacific circulation in a matrix of coupled models. Journal of Climate, 22 (10). pp. 2541-2556. ISSN 1520-0442 doi: 10.1175/2008JCLI2537.1

Abstract/Summary

Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/2021
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Science > School of Mathematical, Physical and Computational Sciences > NCAS
Uncontrolled Keywords sea-surface temperature; equatorial pacific; instability waves; climate model; wind stress; long waves; ocean; specification; simulations; transports
Publisher American Meteorological Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar