Fast regridding of large, complex geospatial datasets

[thumbnail of 19928Com_geo_Complex_Grids_final.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Blower, J. and Clegg, A. (2011) Fast regridding of large, complex geospatial datasets. In: Com.Geo 2011: The 2nd International Conference on Computing for Geospatial Research & Applications, 23-25 May 2011, Washington D.C., pp. 1-6. (10.1145/1999320.1999350)

Abstract/Summary

In the earth sciences, data are commonly cast on complex grids in order to model irregular domains such as coastlines, or to evenly distribute grid points over the globe. It is common for a scientist to wish to re-cast such data onto a grid that is more amenable to manipulation, visualization, or comparison with other data sources. The complexity of the grids presents a significant technical difficulty to the regridding process. In particular, the regridding of complex grids may suffer from severe performance issues, in the worst case scaling with the product of the sizes of the source and destination grids. We present a mechanism for the fast regridding of such datasets, based upon the construction of a spatial index that allows fast searching of the source grid. We discover that the most efficient spatial index under test (in terms of memory usage and query time) is a simple look-up table. A kd-tree implementation was found to be faster to build and to give similar query performance at the expense of a larger memory footprint. Using our approach, we demonstrate that regridding of complex data may proceed at speeds sufficient to permit regridding on-the-fly in an interactive visualization application, or in a Web Map Service implementation. For large datasets with complex grids the new mechanism is shown to significantly outperform algorithms used in many scientific visualization packages.

Item Type Conference or Workshop Item (Paper)
URI https://reading-clone.eprints-hosting.org/id/eprint/19928
Refereed Yes
Divisions Science
Science > School of Mathematical, Physical and Computational Sciences > Environmental Systems Science Centre
Uncontrolled Keywords regridding, GIS, Web Map Service, visualization, curvilinear grids, spatial index
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar