Novel developments in process optimisation using predictive control

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Becerra, V. M., Roberts, P.D. and Griffiths, G.W. (1998) Novel developments in process optimisation using predictive control. Journal of Process Control, 8 (2). pp. 117-138. ISSN 0959-1524 doi: 10.1016/S0959-1524(97)00046-2

Abstract/Summary

In industrial practice, constrained steady state optimisation and predictive control are separate, albeit closely related functions within the control hierarchy. This paper presents a method which integrates predictive control with on-line optimisation with economic objectives. A receding horizon optimal control problem is formulated using linear state space models. This optimal control problem is very similar to the one presented in many predictive control formulations, but the main difference is that it includes in its formulation a general steady state objective depending on the magnitudes of manipulated and measured output variables. This steady state objective may include the standard quadratic regulatory objective, together with economic objectives which are often linear. Assuming that the system settles to a steady state operating point under receding horizon control, conditions are given for the satisfaction of the necessary optimality conditions of the steady-state optimisation problem. The method is based on adaptive linear state space models, which are obtained by using on-line identification techniques. The use of model adaptation is justified from a theoretical standpoint and its beneficial effects are shown in simulations. The method is tested with simulations of an industrial distillation column and a system of chemical reactors.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/19195
Identification Number/DOI 10.1016/S0959-1524(97)00046-2
Refereed Yes
Divisions Science
Uncontrolled Keywords optimal control, predictive control, process identification
Publisher Elsevier
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar