Search from over 60,000 research works

Advanced Search

Emulating AOGCM results using simple climate models

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Olivié, D. and Stuber, N. (2010) Emulating AOGCM results using simple climate models. Climate Dynamics, 35 (7-8). pp. 1257-1287. ISSN 0930-7575 doi: 10.1007/s00382-009-0725-2

Abstract/Summary

Three simple climate models (SCMs) are calibrated using simulations from atmosphere ocean general circulation models (AOGCMs). In addition to using two conventional SCMs, results from a third simpler model developed specifically for this study are obtained. An easy to implement and comprehensive iterative procedure is applied that optimises the SCM emulation of global-mean surface temperature and total ocean heat content, and, if available in the SCM, of surface temperature over land, over the ocean and in both hemispheres, and of the global-mean ocean temperature profile. The method gives best-fit estimates as well as uncertainty intervals for the different SCM parameters. For the calibration, AOGCM simulations with two different types of forcing scenarios are used: pulse forcing simulations performed with 2 AOGCMs and gradually changing forcing simulations from 15 AOGCMs obtained within the framework of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The method is found to work well. For all possible combinations of SCMs and AOGCMs the emulation of AOGCM results could be improved. The obtained SCM parameters depend both on the AOGCM data and the type of forcing scenario. SCMs with a poor representation of the atmosphere thermal inertia are better able to emulate AOGCM results from gradually changing forcing than from pulse forcing simulations. Correct simultaneous emulation of both atmospheric temperatures and the ocean temperature profile by the SCMs strongly depends on the representation of the temperature gradient between the atmosphere and the mixed layer. Introducing climate sensitivities that are dependent on the forcing mechanism in the SCMs allows the emulation of AOGCM responses to carbon dioxide and solar insolation forcings equally well. Also, some SCM parameters are found to be very insensitive to the fitting, and the reduction of their uncertainty through the fitting procedure is only marginal, while other parameters change considerably. The very simple SCM is found to reproduce the AOGCM results as well as the other two comparably more sophisticated SCMs.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/17223
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Springer
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar