Search from over 60,000 research works

Advanced Search

Finite- N effects for ideal polymer chains near a flat impenetrable wall

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Matsen, M. W., Kim, J. U. and Likhtman, A. E. (2009) Finite- N effects for ideal polymer chains near a flat impenetrable wall. European Physical Journal E, 29 (1). pp. 107-115. ISSN 1292-8941 doi: 10.1140/epje/i2009-10454-2

Abstract/Summary

This paper addresses the statistical mechanics of ideal polymer chains next to a hard wall. The principal quantity of interest, from which all monomer densities can be calculated, is the partition function, G N(z) , for a chain of N discrete monomers with one end fixed a distance z from the wall. It is well accepted that in the limit of infinite N , G N(z) satisfies the diffusion equation with the Dirichlet boundary condition, G N(0) = 0 , unless the wall possesses a sufficient attraction, in which case the Robin boundary condition, G N(0) = - x G N ′(0) , applies with a positive coefficient, x . Here we investigate the leading N -1/2 correction, D G N(z) . Prior to the adsorption threshold, D G N(z) is found to involve two distinct parts: a Gaussian correction (for z <~Unknown control sequence '\lesssim' aN 1/2 with a model-dependent amplitude, A , and a proximal-layer correction (for z <~Unknown control sequence '\lesssim' a described by a model-dependent function, B(z).

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/17187
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Springer
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar