Physical interpretation of the correlation between multi-angle spectral data and canopy height

[thumbnail of Schull_etal_GRL_2007.pdf]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Schull, M., Ganguly, S., Samanta, A., Huang, D., Shabanov, N., Jenkins, J., Chiu, J. C., Marshak, A., Blair, J., Myneni, R. and Knyazikhin, Y. (2007) Physical interpretation of the correlation between multi-angle spectral data and canopy height. Geophysical Research Letters, 34 (18). L18405. ISSN 0094-8276 doi: 10.1029/2007GL031143

Abstract/Summary

Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/16766
Identification Number/DOI 10.1029/2007GL031143
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar