In vitro fermentation of oat and barley derived beta-glucans by human faecal microbiota

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hughes, S.A., Shewry, P.R., Gibson, G.R. orcid id iconORCID: https://orcid.org/0000-0002-0566-0476, McCleary, B.V. and Rastall, R.A. (2008) In vitro fermentation of oat and barley derived beta-glucans by human faecal microbiota. Fems Microbiology Ecology, 64 (3). pp. 482-493. ISSN 0168-6496 doi: 10.1111/j.1574-6941.2008.00478.x

Abstract/Summary

Fermentation of beta-glucan fractions from barley [average molecular mass (MM), of 243, 172, and 137 kDa] and oats (average MM of 230 and 150 kDa) by the human faecal microbiota was investigated. Fractions were supplemented to pH-controlled anaerobic batch culture fermenters inoculated with human faecal samples from three donors, in triplicate, for each substrate. Microbiota changes were monitored by fluorescent in situ hybridization; groups enumerated were: Bifidobacterium genus, Bacteroides and Prevotella group, Clostridium histolyticum subgroup, Ruminococcus-Eubacterium-Clostridium (REC) cluster, Lactobacillus-Enterococcus group, Atopobium cluster, and clostridial cluster IX. Short-chain fatty acids and lactic acid were measured by HPLC. The C. histolyticum subgroup increased significantly in all vessels and clostridial cluster IX maintained high populations with all fractions. The Bacteroides-Prevotella group increased with all but the 243-kDa barley and 230-kDa oat substrates. In general beta-glucans displayed no apparent prebiotic potential. The SCFA profile (51 : 32 : 17; acetate : propionate : butyrate) was considered propionate-rich. In a further study a beta-glucan oligosaccharide fraction was produced with a degree of polymerization of 3-4. This fraction was supplemented to small-scale faecal batch cultures and gave significant increases in the Lactobacillus-Enterococcus group; however, the prebiotic potential of this fraction was marginal compared with that of inulin.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/13300
Identification Number/DOI 10.1111/j.1574-6941.2008.00478.x
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences
Uncontrolled Keywords in vitro fermentation, beta-glucans, propionate, Clostridium , MOLECULAR-WEIGHT DISTRIBUTION, HUMAN FECES, HUMAN GUT, OLIGONUCLEOTIDE PROBES, BACTERIAL-POPULATIONS, PHYSICAL-PROPERTIES, DIETARY MODULATION, SITU HYBRIDIZATION, HUMAN COLON, SP NOV.
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar