The soil microbial methylome: a tool to explore the role of epigenetic memory in driving soil abiotic legacy effects

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of Sizmur and Larionov Accepted Manuscript.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Sizmur, T. orcid id iconORCID: https://orcid.org/0000-0001-9835-7195 and Larionov, A. (2025) The soil microbial methylome: a tool to explore the role of epigenetic memory in driving soil abiotic legacy effects. Soil Biology and Biochemistry, 202. 109712. ISSN 0038-0717 doi: 10.1016/j.soilbio.2025.109712

Abstract/Summary

Epigenetics is a phenomenon whereby a stable hereditable change in gene expression can occur without changing the DNA sequence. DNA methylation (the addition of a methyl group to specific nucleotides in specific DNA motifs) is the most studied epigenetic mechanism and is widely observed in both eukaryotic and prokaryotic cells. We hypothesise that the soil methylome may play an important role in the manifestation of soil abiotic legacy effects, whereby temporary exposure of soil microbial communities to particular environmental conditions influences future soil microbial function. These abiotic legacy effects are important because they underpin the delivery of key ecosystem services in response to global environmental change. Third generation long-read sequencing technologies, such as Pacific Bioscience Single-Molecule Real-Time sequencing (SMRT-seq) and Oxford Nanopore sequencing provide an opportunity to study methylome heterogeneity in complex microbial communities. The simultaneous measurement of epigenetic, transcriptional, and microbial community composition changes may lead to the development of biomarkers of historic environmental stress and a greater understanding of the role of the soil methylome in the resilience of soil microbial communities to future environmental perturbations. It is therefore timely to add the meta-epigenetic layer to the multi-omics analysis of the soil microbiome to advance our understanding of soil abiotic legacy effects.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/120205
Identification Number/DOI 10.1016/j.soilbio.2025.109712
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Interdisciplinary centres and themes > Soil Research Centre
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar