The common representative intermediates mechanism version 2 in the United Kingdom chemistry and aerosols model

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Archer‐Nicholls, S., Abraham, N. L., Shin, Y. M., Weber, J. orcid id iconORCID: https://orcid.org/0000-0003-0643-2026, Russo, M. R., Lowe, D., Utembe, S. R., O'Connor, F. M., Kerridge, B., Latter, B., Siddans, R., Jenkin, M., Wild, O. and Archibald, A. T. (2021) The common representative intermediates mechanism version 2 in the United Kingdom chemistry and aerosols model. Journal of Advances in Modeling Earth Systems, 13 (5). e2020MS002420. ISSN 1942-2466 doi: 10.1029/2020MS002420

Abstract/Summary

We document the implementation of the Common Representative Intermediates Mechanism version 2, reduction 5 into the United Kingdom Chemistry and Aerosol model (UKCA) version 10.9. The mechanism is merged with the stratospheric chemistry already used by the StratTrop mechanism, as used in UKCA and the UK Earth System Model, to create a new CRI-Strat mechanism. CRI-Strat simulates a more comprehensive treatment of non-methane volatile organic compounds (NMVOCs) and provides traceability with the Master Chemical Mechanism. In total, CRI-Strat simulates the chemistry of 233 species competing in 613 reactions (compared to 87 species and 305 reactions in the existing StratTrop mechanism). However, while more than twice as complex than StratTrop, the new mechanism is only 75% more computationally expensive. CRI-Strat is evaluated against an array of in situ and remote sensing observations and simulations using the StratTrop mechanism in the UKCA model. It is found to increase production of ozone near the surface, leading to higher ozone concentrations compared to surface observations. However, ozone loss is also greater in CRI-Strat, leading to less ozone away from emission sources and a similar tropospheric ozone burden compared to StratTrop. CRI-Strat also produces more carbon monoxide than StratTrop, particularly downwind of biogenic VOC emission sources, but has lower burdens of nitrogen oxides as more is converted into reservoir species. The changes to tropospheric ozone and nitrogen budgets are sensitive to the treatment of NMVOC emissions, highlighting the need to reduce uncertainty in these emissions to improve representation of tropospheric chemical composition.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/119963
Identification Number/DOI 10.1029/2020MS002420
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar