Search from over 60,000 research works

Advanced Search

The importance of boundary evolution for solar-wind modelling

[thumbnail of Open Access]
Preview
s41598-024-80162-2.pdf - Published Version (4MB) | Preview
Available under license: Creative Commons Attribution
[thumbnail of Time_dependent_solar_wind_modelling_REVISED.pdf]
Restricted to Repository staff only
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Owens, M. J. orcid id iconORCID: https://orcid.org/0000-0003-2061-2453, Barnard, L. orcid id iconORCID: https://orcid.org/0000-0001-9876-4612 and Arge, C. N. (2024) The importance of boundary evolution for solar-wind modelling. Scientific Reports, 14 (1). 28975. ISSN 2045-2322 doi: 10.1038/s41598-024-80162-2

Abstract/Summary

The solar wind is a continual outflow of plasma and magnetic field from the Sun’s upper atmosphere—the corona—that expands to fills the solar system. Variability in the near-Earth solar-wind conditions can produce adverse space weather that impacts ground- and space-based technologies. Consequently, numerical fluid models of the solar wind are used to forecast conditions a few days ahead. The solar-wind inner-boundary conditions are supplied by models of the corona that are, in turn, constrained by observations of the photospheric magnetic field. While solar eruptions—coronal mass ejections (CMEs)—are treated as time-dependent structures, a single coronal “snapshot” is typically used to determine the ambient solar-wind for a complete model run. Thus, all available time-history information from previous coronal-model solutions is discarded and the solar wind is treated as a steady-state flow, unchanging in the rotating frame of the Sun. In this study, we use 1 year of daily-updated coronal-model solutions to comprehensively compare steady-state solar-wind modelling with a time-dependent method. We demonstrate, for the first time, how the SS approach can fundamentally misrepresent the accuracy of coronal models. We also attribute three key problems with current space-weather forecasting directly to the steady-state approach: (1) the seemingly paradoxical result that forecasts based on observations from 3-days previous are more accurate than forecasts based on the most recent observations; (2) high inconsistency, with forecasts for a given day jumping significantly as new observations become available, changing CME propagation times by up to 17 h; and (3) insufficient variability in the heliospheric magnetic field, which controls solar energetic particle propagation to Earth. The time-dependent approach is shown to alleviate all three issues. It provides a consistent, physical solution which more accurately represents the information present in the coronal models. By incorporating the time history in the solar wind along the Sun-Earth line, the time-dependent approach will provide improvements to forecasting CME propagation to Earth.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/119611
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Nature Publishing Group
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar