Effect of global and regional SST biases on the East Asian Summer Monsoon in the MetUM GA7 and GC3 configurations

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of FrancoDiazetal2023_accepted.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Franco-Díaz, A., Klingaman, N. P. orcid id iconORCID: https://orcid.org/0000-0002-2927-9303, Turner, A. G. orcid id iconORCID: https://orcid.org/0000-0002-0642-6876, Dong, B. orcid id iconORCID: https://orcid.org/0000-0003-0809-7911 and Guo, L. (2023) Effect of global and regional SST biases on the East Asian Summer Monsoon in the MetUM GA7 and GC3 configurations. Climate Dynamics. ISSN 1432-0894 doi: 10.1007/s00382-023-06954-w

Abstract/Summary

Climate-length experiments of the Met Office Unified Model Global Atmosphere 7.0 (GA7) and Global Coupled 3.0 (GC3) configurations are evaluated against observations and reanalyses for the simulation of the East Asian summer monsoon (EASM). The results show systematic model biases, such as overestimated rainfall over southern China and underestimated rainfall over northern China, suggesting a monsoon that does not penetrate northward enough. We evaluate the effects on the EASM of regional errors in sea-surface temperature (SST) conditions in three regions: the Pacific, the Indian, and the Atlantic Oceans. The global SST biases in GC3 configuration substantially shift the EASM seasonal cycle: a late northward progression of the EASM in the early/mid- monsoon season, and an early retreat of the monsoon that also reduces rainfall over most of northern China. The EASM seasonal rainfall bias in the EASM region is linked to changes in the locations and strength of the western North Pacific subtropical high, which is associated with biases in local evaporation and moisture transport towards South China. GC3 biases in the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) teleconnection pathways also influence the EASM biases. GC3 biases weaken the ENSO teleconnection to the EASM and cause a strong dry bias in southeast China during developing El Nino.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/113297
Identification Number/DOI 10.1007/s00382-023-06954-w
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Springer
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar