Preparation and physiochemical analysis of novel ciprofloxacin / dicarboxylic acid salts

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of 1-s2.0-S0022354922003446-main.pdf]
Text - Accepted Version
· Restricted to Repository staff only
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hibbard, T., Nyambura, B., Scholes, P., Totolici, M., Shankland, K. orcid id iconORCID: https://orcid.org/0000-0001-6566-0155 and Al-Obaidi, H. orcid id iconORCID: https://orcid.org/0000-0001-9735-0303 (2023) Preparation and physiochemical analysis of novel ciprofloxacin / dicarboxylic acid salts. Journal of Pharmaceutical Sciences, 112 (1). pp. 195-203. ISSN 0022-3549 doi: 10.1016/j.xphs.2022.08.008

Abstract/Summary

The crystal structures of four novel dicarboxylic acid salts of ciprofloxacin (CFX) with modified physicochemical properties, prepared by mechanochemical synthesis and solvent crystallization, are reported. A series of dicarboxylic acids of increasing molecular weight was chosen, predicted to interact via a carboxylic acid:secondary amine synthon. These were succinic (SA), glutaric (GA), adipic (AA) and pimelic (PA) acids (4, 5, 6, 7 carbon atoms respectively). Characterized by single crystal and powder X-ray diffraction, Fourier-Transform Infrared Spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and aqueous solubility measurements, these salts showed distinct physicochemical properties relative to ciprofloxacin base. Searches of the Cambridge Structural Database (CSD) confirmed CFX-SA, CFX-GA, CFX-AA and CFX-PA to be novel crystal structures. Furthermore, the GA salt has substantially higher solubility than the widely available hydrochloride monohydrate salt (CFX-HCl·H2O). CFX-SA, CFX-GA and CFX-AA showed minimum inhibitory concentration (MIC) of 0.008 g/L and CFX-PA showed MIC of 0.004 g/L. The prepared CFX salts retained antibacterial activity exhibiting equivalent antimicrobial activity to CFX-HCl·H2O. These salts have positive implications for increasing the application of CFX beyond conventional oral formulations and highlight mechanochemical activation as suitable production method.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/106925
Identification Number/DOI 10.1016/j.xphs.2022.08.008
Refereed Yes
Divisions Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Thermal Analysis (CAF)
Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Xray (CAF)
Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Electron Microscopy Laboratory (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar