Search from over 60,000 research works

Advanced Search

Aldehyde-functional thermoresponsive diblock copolymer worm gels exhibit strong mucoadhesion

[thumbnail of Open access]
Preview
Aldehyde worm gels-ChemSci-2022.pdf - Published Version (1MB) | Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Brotherton, E. E., Neal, T. J., Kaldybekov, D. B., Smallridge, M. J., Khutoryanskiy, V. V. orcid id iconORCID: https://orcid.org/0000-0002-7221-2630 and Armes, S. P. (2022) Aldehyde-functional thermoresponsive diblock copolymer worm gels exhibit strong mucoadhesion. Chemical Science, 13 (23). pp. 6888-6898. ISSN 1478-6524 doi: 10.1039/D2SC02074B

Abstract/Summary

A series of thermoresponsive diblock copolymer worm gels is prepared via reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate using a water-soluble methacrylic precursor bearing pendent cis-diol groups. Selective oxidation using an aqueous solution of sodium periodate affords the corresponding aldehyde-functional worm gels. The aldehyde groups are located within the steric stabilizer chains and the aldehyde content can be adjusted by varying the periodate/cis-diol molar ratio. These aldehyde-functional worm gels are evaluated in terms of their mucoadhesion performance with the aid of a fluorescence microscopy-based assay. Using porcine urinary bladder mucosa as a model substrate, we demonstrate that these worm gels offer a comparable degree of mucoadhesion to that afforded by chitosan, which is widely regarded to be a ‘gold standard’ positive control in this context. The optimum degree of aldehyde functionality is approximately 30%: lower degrees of functionalization lead to weaker mucoadhesion, whereas higher values compromise the desirable thermoresponsive behavior of these worm gels.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/105426
Item Type Article
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
Publisher Royal Society of Chemistry
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar