References
1. Ebbesson, S.O.E.; Voruganti, V.S.; Higgins, P.B.; Fabsitz, R.R.; Ebbesson, L.O.; Laston, S.; Harris, W.S.; Kennish, J.; Umans, B.D.; Wang, H., et al. Fatty acids linked to cardiovascular mortality are associated with risk factors. International Journal of Circumpolar Health 2015, 74, 28055-28011, doi:10.3402/ijch.v74.28055.
2. Sun, Y.; Neelakantan, N.; Wu, Y.; Lote-Oke, R.; Pan, A.; van Dam, R.M. Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. Journal of Nutrition 2015, 145, 1549-1558, doi:10.3945/jn.115.210575.
3. Regulation, E. No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Eur. Comm. Off. J. Eur. Union 2011, 20, 168-213.
4. World Health Organization. Eliminating trans fats in Europe – A policy brief ( 2015). Availabe online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/publications/2015/eliminating-trans-fats-in-europe-a-policy-brief-2015 (accessed on 15 August 2018).
5. Gunstone, F. Oils and fats in the food industry; John Wiley & Sons: 2009; Vol. 6.
6. Hernandez, E.M.; Kamal-Eldin, A. Processing and nutrition of fats and oils; John Wiley & Sons: 2013.
7. McClements, D.J.; Decker, E.A. Lipid Oxidation in Oil‐in‐Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. Journal of Food Science 2000, 65, 1270-1282, doi:10.1111/j.1365-2621.2000.tb10596.x.
8. McClements, D.J. Emulsion Stability. In Food emulsions: principles, practices, and techniques, 3 ed.; CRC press: London, 2016; pp. 289-382.
9. Różańska, M.B.; Kowalczewski, P.Ł.; Tomaszewska-Gras, J.; Dwiecki, K.; Mildner-Szkudlarz, S. Seed-Roasting Process Affects Oxidative Stability of Cold-Pressed Oils. Antioxidants 2019, 8, 313, doi:10.3390/antiox8080313.
10. Wijesundera, C.; Ceccato, C.; Fagan, P.; Shen, Z. Seed roasting improves the oxidative stability of canola (B. napus) and mustard (B. juncea) seed oils. European Journal of Lipid Science and Technology 2008, 110;101;, 360-367, doi:10.1002/ejlt.200700214.
11. Szydłowska‐Czerniak, A.; Karlovits, G.; Dianoczki, C.; Recseg, K.; Szłyk, E. Comparison of two analytical methods for assessing antioxidant capacity of rapeseed and olive oils. Journal of the American Oil Chemists' Society 2008, 85, 141-149.
12. Poyato, C.; Ansorena, D.; Navarro-Blasco, I.; Astiasarán, I. A novel approach to monitor the oxidation process of different types of heated oils by using chemometric tools. Food research international 2014, 57, 152-161, doi:10.1016/j.foodres.2014.01.033.
13. Bhatnagar, A.S.; Prasanth Kumar, P.K.; Hemavathy, J.; Gopala Krishna, A.G. Fatty Acid Composition, Oxidative Stability, and Radical Scavenging Activity of Vegetable Oil Blends with Coconut Oil. Journal of the American Oil Chemists' Society 2009, 86, 991-999, doi:10.1007/s11746-009-1435-y.
14. Elkin, R.G.; Kukorowski, A.N.; Ying, Y.; Harvatine, K.J. Dietary High‐Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n‐3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil. Lipids 2018, 53, 235-249, doi:10.1002/lipd.12016.
15. Stauffer, C.E. Fats and oils; Eagan Press: 1996.
16. O'brien, R.D. Fats and oils: formulating and processing for applications; CRC press: 2008.
17. Tuberoso, C.I.G.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chemistry 2007, 103, 1494-1501, doi:10.1016/j.foodchem.2006.08.014.
18. Janu, C.; Kumar, D.R.S.; Reshma, M.V.; Jayamurthy, P.; Sundaresan, A.; Nisha, P. Comparative Study on the Total Phenolic Content and Radical Scavenging Activity of Common Edible Vegetable Oils. Journal of Food Biochemistry 2014, 38, 38-49, doi:10.1111/jfbc.12023.
19. Jimenez-Alvarez, D.; Giuffrida, F.; Golay, P.A.; Cotting, C.; Lardeau, A.; Keely, B.J. Antioxidant activity of oregano, parsley, and olive mill wastewaters in bulk oils and oil-in-water emulsions enriched in fish oil. Journal of Agricultural and Food Chemistry 2008, 56, 7151-7159, doi:10.1021/jf801154r.
20. Psomiadou, E.; Tsimidou, M. Simultaneous HPLC Determination of Tocopherols, Carotenoids, and Chlorophylls for Monitoring Their Effect on Virgin Olive Oil Oxidation. Journal of Agricultural and Food Chemistry 1998, 46, 5132-5138, doi:10.1021/jf980250n.
21. Karabulut, I.; Topcu, A.; Yorulmaz, A.; Tekin, A.; Ozay, D.S. Effects of the industrial refining process on some properties of hazelnut oil. European Journal of Lipid Science and Technology 2005, 107, 476-480, doi:10.1002/ejlt.200501147.
22. Costa, J.; Amaral, J.S.; Mafra, I.; Oliveira, M.B.P.P. Refining of Roundup Ready® soya bean oil: Effect on the fatty acid, phytosterol and tocopherol profiles. European Journal of Lipid Science and Technology 2011, 113, 528-535, doi:doi:10.1002/ejlt.201000385.
23. Gutiérrez-Luna, K.; Astiasarán, I.; Ansorena, D. Gels as fat replacers in bakery products: A review. Critical Reviews in Food Science and Nutrition 2020, 1-14.
24. Rogers, M.A. Novel structuring strategies for unsaturated fats–Meeting the zero-trans, zero-saturated fat challenge: A review. Food Research International 2009, 42, 747-753.
25. Espert, M.; Sanz, T.; Salvador, A. Development of Structured Sunflower Oil Systems for Decreasing Trans and Saturated Fatty Acid Content in Bakery Creams. Foods 2021, 10, 505, doi:10.3390/foods10030505.
26. Nieto, G.; Lorenzo, J.M. Use of olive oil as fat replacer in meat emulsions. Current Opinion in Food Science 2021.
27. Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry 2012, 132, 1221-1229, doi:10.1016/j.foodchem.2011.11.091.
28. Hategekimana, J.; Chamba, M.V.M.; Shoemaker, C.F.; Majeed, H.; Zhong, F. Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 483, 70-80, doi:10.1016/j.colsurfa.2015.03.020.
29. Öztürk, B. Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability: Nanoemulsion delivery systems for lipophilic vitamins. European Journal of Lipid Science and Technology 2017, 119, 1500539, doi:10.1002/ejlt.201500539.
30. Chan, S.W.; Mirhosseini, H.; Taip, F.S.; Ling, T.C.; Tan, C.P. Stability of CoQ10-Loaded Oil-in-Water (O/W) Emulsion: Effect of Carrier Oil and Emulsifier Type. Food Biophysics 2013, 8, 273-281, doi:10.1007/s11483-013-9300-9.
31. Sahafi, S.M.; Goli, S.A.H.; Kadivar, M.; Varshosaz, J. Preparation and characterization of bioactive oils nanoemulsions: Effect of oil unsaturation degree, emulsifier type and concentration. Journal of dispersion science and technology 2018, 39, 676-686, doi:10.1080/01932691.2017.1381919.
32. Vasilean, I.; Aprodu, I.; Vasilean, I.; Patrașcu, L.; Universitatea Dunarea de Jos, F.d.S.s.I.A.S.D.N.R.O.G.R.l.p.u.r.; Universitatea Dunarea de Jos, F.d.S.s.I.A.S.D.N.R.O.G.R. Pulse flour based emulsions - The effect of oil type on technological and functional characteristics. Studia Universitatis Babes-Bolyai Chemia 2018, 63, 199-214, doi:10.24193/subbchem.2018.1.15.
33. Komaiko, J.S.; McClements, D.J. Formation of Food‐Grade Nanoemulsions Using Low‐Energy Preparation Methods: A Review of Available Methods. Comprehensive Reviews in Food Science and Food Safety 2016, 15, 331-352, doi:10.1111/1541-4337.12189.
34. Kim, S.O.; Ha, T.V.A.; Choi, Y.J.; Ko, S. Optimization of Homogenization–Evaporation Process for Lycopene Nanoemulsion Production and Its Beverage Applications. Journal of Food Science 2014, 79, N1604-N1610, doi:10.1111/1750-3841.12472.
35. Yi, J.; Li, Y.; Zhong, F.; Yokoyama, W. The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids 2014, 35, 19-27.
36. Salvia-Trujillo, L.; McClements, D.J. Influence of Nanoemulsion Addition on the Stability of Conventional Emulsions. Food biophysics 2015, 11, 1-9, doi:10.1007/s11483-015-9401-8.
37. Pathakoti, K.; Manubolu, M.; Hwang, H.-M. Nanostructures: Current uses and future applications in food science. Journal of Food and Drug Analysis 2017, 25, 245-253, doi:10.1016/j.jfda.2017.02.004.
38. McClements, D.J. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 2011, 7, 2297-2316, doi:10.1039/c0sm00549e.
39. Arancibia, C.; Navarro-Lisboa, R.; Zúñiga, R.N.; Matiacevich, S. Application of CMC as thickener on nanoemulsions based on olive oil: Physical properties and stability. International Journal of Polymer Science 2016, 2016, 1-10, doi:10.1155/2016/6280581.
40. Taha, A.; Hu, T.; Hu, H.; Zhang, Z.; Bakry, A.M.; Khalifa, I.; Pan, S. Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrasonics - Sonochemistry 2018, 49, 283-293, doi:10.1016/j.ultsonch.2018.08.020.
41. AOAC. AOAC Official Method 969.33 Fatty Acids in Oils and Fats. 2000.
42. Nhu-Trang, T.-T.; Casabianca, H.; Grenier-Loustalot, M.-F. Authenticity control of essential oils containing citronellal and citral by chiral and stable-isotope gas-chromatographic analysis. Analytical and Bioanalytical Chemistry 2006, 386, 2141-2152, doi:10.1007/s00216-006-0842-2.
43. Lee, S.Y.; Fu, S.Y.; Chong, G.H. Ultrasound‐assisted extraction kinetics, fatty acid profile, total phenolic content and antioxidant activity of green solvents' extracted passion fruit oil. International Journal of Food Science & Technology 2015, 50, 1831-1838, doi:10.1111/ijfs.12844.
44. Commission Regulation (EEC). On the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis EEC No 2568/91. OJEU N° L 248 1991.
45. Martins, P.F.; Ito, V.M.; Batistella, C.B.; Maciel, M.R.W. Free fatty acid separation from vegetable oil deodorizer distillate using molecular distillation process. Separation and Purification Technology 2006, 48, 78-84, doi:10.1016/j.seppur.2005.07.028.
46. Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology 2011, 48, 412-422, doi:10.1007/s13197-011-0251-1.
47. Mraihi, F.; Journi, M.; Chérif, J.K.; Trabelsi-Ayadi, M. Characterization of threeNigella SativaL. Crude Oil Species, Measures of their Antioxidant Activity by DPPH. Journal of Biologically Active Products from Nature 2013, 3, 208-215, doi:10.1080/22297928.2013.797630.
48. Qiu, C.; Zhao, M.; Decker, E.A.; McClements, D.J. Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chemistry 2015, 175, 249-257, doi:10.1016/j.foodchem.2014.11.112.
49. Sharif, H.R.; Goff, H.D.; Majeed, H.; Liu, F.; Nsor-Atindana, J.; Haider, J.; Liang, R.; Zhong, F. Physicochemical stability of β-carotene and α-tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 529, 550-559, doi:10.1016/j.colsurfa.2017.05.076.
50. Guerra-Rosas, M.I.; Morales-Castro, J.; Ochoa-Martínez, L.A.; Salvia-Trujillo, L.; Martín-Belloso, O. Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids 2016, 52, 438-446, doi:10.1016/j.foodhyd.2015.07.017.
51. Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S.R.; Chougule, M.B.; Tekade, R.K. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery, 2018; 10.1016/B978-0-12-817909-3.00010-8pp. 369-400.
52. Granato, D.; De Castro, I.A.; Ellendersen, L.S.N.; Masson, M.L. Physical Stability Assessment and Sensory Optimization of a Dairy‐Free Emulsion Using Response Surface Methodology. Journal of food science 2010, 75, S149-S155, doi:10.1111/j.1750-3841.2010.01514.x.
53. Tadros, T.; Izquierdo, R.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science 2004, 108, 303-318, doi:10.1016/j.cis.2003.10.023.
54. Sabliov, C.; Chen, H.; Yada, R. Nanotechnology and functional foods: effective delivery of bioactive ingredients; WILEY: Somerset, 2015; 10.1002/9781118462157.
55. Liu, W.; Sun, D.; Li, C.; Liu, Q.; Xu, J. Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of colloid and interface science 2006, 303, 557-563.
56. Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Advances in colloid and interface science 2004, 108-109, 303-318, doi:10.1016/j.cis.2003.10.023.
57. Lochhead, R. Basic Physical Sciences for the Formulation of Cosmetic Products. Cosmetic Science and Technology: Theoretical Principles and Applications. Elsevier Inc 2017, 39-76.
58. Joung, H.J.; Choi, M.J.; Kim, J.T.; Park, S.H.; Park, H.J.; Shin, G.H. Development of Food‐Grade Curcumin Nanoemulsion and its Potential Application to Food Beverage System: Antioxidant Property and In Vitro Digestion. Journal of Food Science 2016, 81, N745-N753, doi:10.1111/1750-3841.13224.
59. Mehmood, T.; Ahmad, A.; Ahmed, Z.; Ahmed, A. Optimization of olive oil based O/W nanoemulsions prepared through ultrasonic homogenization: A response surface methodology approach. Food Chemistry 2017, 229, 790-796, doi:10.1016/j.foodchem.2017.03.023.
60. Nourbehesht, N.; Shekarchizadeh, H.; Soltanizadeh, N. Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation. Ultrasonics - Sonochemistry 2018, 42, 585-593, doi:10.1016/j.ultsonch.2017.12.029.
61. Klang, V.; Valenta, C. Lecithin-based nanoemulsions. Journal of Drug Delivery Science and Technology 2011, 21, 55-76, doi:10.1016/S1773-2247(11)50006-1.
62. Jafari, S.M.; He, Y.; Bhandari, B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering 2007, 82, 478-488.
63. Fathordoobady, F.; Sannikova, N.; Guo, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Comparing microfluidics and ultrasonication as formulation methods for developing hempseed oil nanoemulsions for oral delivery applications. Scientific reports 2021, 11, 72-72, doi:10.1038/s41598-020-79161-w.
64. Orafidiya, L.O.; Oladimeji, F.A. Determination of the required HLB values of some essential oils. International journal of pharmaceutics 2002, 237, 241-249, doi:10.1016/S0378-5173(02)00051-0.
65. Hong, I.K.; Kim, S.I.; Lee, S.B. Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of industrial and engineering chemistry (Seoul, Korea) 2018, 67, 123-131, doi:10.1016/j.jiec.2018.06.022.
66. Schmidts, T.; Dobler, D.; Guldan, A.-C.; Paulus, N.; Runkel, F. Multiple W/O/W emulsions—Using the required HLB for emulsifier evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 372, 48-54.
67. Hauss, D.J. Oral lipid-based formulations: enhancing the bioavailability of poorly water-soluble drugs; CRC Press: 2007; Vol. 170.
68. Niczinger, N.A.; Kállai-Szabó, B.; Lengyel, M.; Gordon, P.; Klebovich, I.; Antal, I. Physicochemical analysis in the evaluation of reconstituted dry emulsion tablets. Journal of pharmaceutical and biomedical analysis 2017, 134, 86-93, doi:10.1016/j.jpba.2016.11.031.
69. Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for Food Applications: Development and Characterization. Food and Bioprocess Technology 2012, 5, 854-867, doi:10.1007/s11947-011-0683-7.
70. Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Elsevier Ltd: OXFORD, 2003; Vol. 24, pp 4283-4300.
71. Yang, Y.; Leser, M.E.; Sher, A.A.; McClements, D.J. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®). Food Hydrocolloids 2013, 30, 589-596, doi:10.1016/j.foodhyd.2012.08.008.
72. McClements, D.J. Colloidal basis of emulsion color. Current Opinion in Colloid & Interface Science 2002, 7, 451-455, doi:10.1016/S1359-0294(02)00075-4.
73. Moyano, M.J.; Heredia, F.J.; Meléndez-Martínez, A.J. The Color of Olive Oils: The Pigments and Their Likely Health Benefits and Visual and Instrumental Methods of Analysis. Comprehensive Reviews in Food Science and Food Safety 2010, 9, 278-291, doi:10.1111/j.1541-4337.2010.00109.x.
74. Chanamai, R.; McClements, D.J. Prediction of emulsion color from droplet characteristics: dilute monodisperse oil-in-water emulsions. Food Hydrocolloids 2001, 15, 83-91, doi:10.1016/S0268-005X(00)00055-2.
75. Ghazani, S.M.; García-Llatas, G.; Marangoni, A.G. Minor Constituents in Canola Oil Processed by Traditional and Minimal Refining Methods. Journal of the American Oil Chemists' Society 2013, 90, 743-756, doi:10.1007/s11746-013-2215-2.
76. Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids 2011, 25, 1000-1008, doi:10.1016/j.foodhyd.2010.09.017.
77. McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 2018, 251, 55-79, doi:10.1016/j.cis.2017.12.001.
78. Zarena, A.; Bhattacharya, S.; Kadimi, U.S. Mangosteen oil-in-water emulsions: rheology, creaming, and microstructural characteristics during storage. Food and Bioprocess Technology 2012, 5, 3007-3013.
79. Sobhaninia, M.; Nasirpour, A.; Shahedi, M.; Golkar, A. Oil-in-water emulsions stabilized by whey protein aggregates: Effect of aggregate size, pH of aggregation and emulsion pH. Journal of Dispersion Science and Technology 2017, 38, 1366-1373.
80. Esteban, B.; Riba, J.-R.; Baquero, G.; Rius, A.; Puig, R. Temperature dependence of density and viscosity of vegetable oils. Biomass and bioenergy 2012, 42, 164-171.
81. Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Comprehensive reviews in food science and food safety 2006, 5, 169-186.
82. Kiokias, S.N.; Dimakou, C.P.; Tsaprouni, I.V.; Oreopoulou, V. Effect of Compositional Factors against the Thermal Oxidative Deterioration of Novel Food Emulsions. Food Biophysics 2006, 1, 115-123, doi:10.1007/s11483-006-9015-2.
83. Gunstone, F. Vegetable oils in food technology: composition, properties and uses; John Wiley & Sons: 2011.
84. Frega, N.; Mozzon, M.; Lercker, G. Effects of free fatty acids on oxidative stability of vegetable oil. Journal of the American Oil Chemists' Society 1999, 76, 325-329, doi:10.1007/s11746-999-0239-4.
85. Floury, J.; Desrumaux, A.; Lardières, J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Science and Emerging Technologies 2000, 1, 127-134, doi:10.1016/S1466-8564(00)00012-6.
86. Gohtani, S.; Sirendi, M.; Yamamoto, N.; Kajikawa, K.; Yamano, Y. EFFECT OF DROPLET SIZE ON OXIDATION OF DOCOSAHEXAENOIC ACID IN EMULSION SYSTEM. Journal of Dispersion Science and Technology 1999, 20, 1319-1325, doi:10.1080/01932699908943855.
87. Chantrapornchai, W.; Clydesdale, F.; McClements, D.J. Influence of Droplet Size and Concentration on the Color of Oil-in-Water Emulsions. Journal of agricultural and food chemistry 1998, 46, 2914-2920, doi:10.1021/jf980278z.
88. Bueschelberger, H.G.; Tirok, S.; Stoffels, I.; Schoeppe, A. Lecithins; John Wiley & Sons, Ltd: Chichester, UK, 2004; pp. 21-60.