Search from over 60,000 research works

Advanced Search

Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia

[thumbnail of Open Access]
Preview
pcbi.1009520.pdf - Published Version (3MB) | Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Poshtkohi, A. orcid id iconORCID: https://orcid.org/0000-0001-5636-1567, Wade, J. orcid id iconORCID: https://orcid.org/0000-0003-1300-9429, McDaid, L. orcid id iconORCID: https://orcid.org/0000-0002-1197-4375, Liu, J. orcid id iconORCID: https://orcid.org/0000-0002-9790-1571, Dallas, M. orcid id iconORCID: https://orcid.org/0000-0002-5190-0522 and Bithell, A. orcid id iconORCID: https://orcid.org/0000-0002-0294-078X (2021) Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia. PLOS Computational Biology, 17 (11). e1009520. ISSN 1553-7358 doi: 10.1371/journal.pcbi.1009520

Abstract/Summary

Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/101255
Item Type Article
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Division of Pharmacology
Uncontrolled Keywords Research Article, Biology and life sciences, Physical sciences
Publisher Public Library of Science
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar