Response of Amazonian forests to mid-Holocene drought: a model-data comparison

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of main_manuscript_Smith_etal.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only
[thumbnail of supporting_information_Smith_etal.pdf]
Text - Supplemental Material
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Smith, R. J., Singarayer, J. S. and Mayle, F. E. orcid id iconORCID: https://orcid.org/0000-0001-9208-0519 (2021) Response of Amazonian forests to mid-Holocene drought: a model-data comparison. Global Change Biology, 28 (1). pp. 201-226. ISSN 1365-2486 doi: 10.1111/gcb.15929

Abstract/Summary

There is major concern for the fate of Amazonia over the coming century in the face of anthropogenic climate change. A key area of uncertainty is the scale of rainforest die-back to be expected under a future, drier climate. In this study, we use the middle Holocene (ca. 6,000 years before present) as an approximate analogue for a drier future, given that palaeoclimate data show much of Amazonia was significantly drier than present at this time. Here, we use an ensemble of climate and vegetation models to explore the sensitivity of Amazonian biomes to mid-Holocene climate change. For this we employ three dynamic vegetation models (JULES, IBIS, and SDGVM) forced by the bias-corrected mid-Holocene climate simulations from seven models that participated in the Paleoclimate Modelling Intercomparison Project 3 (PMIP3). These model outputs are compared with a multi-proxy palaeoecological dataset to gain a better understanding of where in Amazonia we have most confidence in the mid-Holocene vegetation simulations. A robust feature of all simulations and palaeodata is that the central Amazonian rainforest biome is unaffected by mid-Holocene drought. Greater divergence in mid-Holocene simulations exists in ecotonal eastern and southern Amazonia. Vegetation models driven with climate models that simulate a drier mid Holocene (100-150 mm per year decrease) better capture the observed (palaeodata) tropical forest die-back in these areas. Based on the relationship between simulated rainfall decrease and vegetation change, we find indications that in southern Amazonia the rate of tropical forest die-back was ~125,000 km2 per 100 mm rainfall decrease in the mid Holocene. This provides a baseline sensitivity of tropical forests to drought for this region (without human-driven changes to greenhouse gases, fire, and deforestation). We highlight the need for more palaeoecological and palaeoclimate data across lowland Amazonia to constrain model responses.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/100586
Identification Number/DOI 10.1111/gcb.15929
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Wiley-Blackwell
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar