U.K. climate projections: Summer daytime and nighttime urban heat island changes in England’s major cities

[thumbnail of Lo_main_revision2.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Eunice Lo, Y. T., Mitchell, D. M., Bohnenstengel, S. I., Collins, M., Hawkins, E. orcid id iconORCID: https://orcid.org/0000-0001-9477-3677, Hegerl, G. C., Joshi, M. and Stott, P. A. (2020) U.K. climate projections: Summer daytime and nighttime urban heat island changes in England’s major cities. Journal of Climate, 33 (20). pp. 9015-9030. ISSN 0894-8755 doi: 10.1175/JCLI-D-19-0961.1

Abstract/Summary

In the United Kingdom, where 90% of residents are projected to live in urban areas by 2050, projecting changes in urban heat islands (UHIs) is essential to municipal adaptation. Increased summer temperatures are linked to increased mortality. Using the new regional U.K. Climate Projections, UKCP18-regional, we estimate the 1981–2079 trends in summer urban and rural near-surface air temperatures and in UHI intensities during day and at night in the 10 most populous built-up areas in England. Summer temperatures increase by 0.45°–0.81°C per decade under RCP8.5, depending on the time of day and location. Nighttime temperatures increase more in urban than rural areas, enhancing the nighttime UHI by 0.01°–0.05°C per decade in all cities. When these upward UHI signals emerge from 2008–18 variability, positive summer nighttime UHI intensities of up to 1.8°C are projected in most cities. However, we can prevent most of these upward nighttime UHI signals from emerging by stabilizing climate to the Paris Agreement target of 2°C above preindustrial levels. In contrast, daytime UHI intensities decrease in nine cities, at rates between −0.004° and −0.05°C per decade, indicating a trend toward a reduced daytime UHI effect. These changes reflect different feedbacks over urban and rural areas and are specific to UKCP18-regional. Future research is important to better understand the drivers of these UHI intensity changes.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/93070
Identification Number/DOI 10.1175/JCLI-D-19-0961.1
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar