Accounting for observation uncertainty and bias due to unresolved scales with the Schmidt-Kalman filter

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of bell_et_al.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Bell, Z., Dance, S. L. orcid id iconORCID: https://orcid.org/0000-0003-1690-3338 and Waller, J. A. (2020) Accounting for observation uncertainty and bias due to unresolved scales with the Schmidt-Kalman filter. Tellus A: Dynamic Meteorology and Oceanography, 72 (1). pp. 1-21. ISSN 1600-0870 doi: 10.1080/16000870.2020.1831830

Abstract/Summary

Data assimilation combines observations with numerical model data, to provide a best estimate of a real system. Errors due to unresolved scales arise when there is a spatiotemporal scale mismatch between the processes resolved by the observations and model. We present theory on error, uncertainty and bias due to unresolved scales for situations where observations contain information on smaller scales than can be represented by the numerical model. The Schmidt-Kalman filter, which accounts for the uncertainties in the unrepresented processes, is investigated and compared with an optimal Kalman filter that treats all scales, and a suboptimal Kalman filter that accounts for the largescales only. The equation governing true analysis uncertainty is reformulated to include representation uncertainty for each filter. We apply the filters to a random walk model with one variable for large-scale processes and one variable for small-scale processes. Our new results show that the Schmidt-Kalman filter has the largest benefit over a suboptimal filter in regimes of high representation uncertainty and low instrument uncertainty but performs worse than the optimal filter. Furthermore, we review existing theory showing that errors due to unresolved scales often result in representation error bias. We derive a novel bias-correcting form of the Schmidt-Kalman filter and apply it to the random walk model with biased observations. We show that the bias-correcting Schmidt-Kalman filter successfully compensates for representation error biases. Indeed, it is more important to treat an observation bias than an unbiased error due to unresolved scales.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/92649
Identification Number/DOI 10.1080/16000870.2020.1831830
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Taylor & Francis
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar