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Accounting for observation uncertainty and bias due to
unresolved scales with the Schmidt-Kalman filter

By ZACKARY BELL1�, SARAH L. DANCE1,2, and JOANNE A. WALLER1, 1Department of
Meteorology, University of Reading, Reading, UK; 2Department of Mathematics and Statistics,

University of Reading, Reading, UK

(Manuscript Received 27 November 2019; in final form 1 September 2020)

ABSTRACT
Data assimilation combines observations with numerical model data, to provide a best estimate of a real
system. Errors due to unresolved scales arise when there is a spatio-temporal scale mismatch between the
processes resolved by the observations and model. We present theory on error, uncertainty and bias due to
unresolved scales for situations where observations contain information on smaller scales than can be
represented by the numerical model. The Schmidt-Kalman filter, which accounts for the uncertainties in the
unrepresented processes, is investigated and compared with an optimal Kalman filter that treats all scales,
and a suboptimal Kalman filter that accounts for the large-scales only. The equation governing true analysis
uncertainty is reformulated to include representation uncertainty for each filter. We apply the filters to a
random walk model with one variable for large-scale processes and one variable for small-scale processes.
Our new results show that the Schmidt-Kalman filter has the largest benefit over a suboptimal filter in
regimes of high representation uncertainty and low instrument uncertainty but performs worse than the
optimal filter. Furthermore, we review existing theory showing that errors due to unresolved scales often
result in representation error bias. We derive a novel bias-correcting form of the Schmidt-Kalman filter and
apply it to the random walk model with biased observations. We show that the bias-correcting Schmidt-
Kalman filter successfully compensates for representation error biases. Indeed, it is more important to treat
an observation bias than an unbiased error due to unresolved scales.

Keywords: data assimilation, observation uncertainty, error due to unresolved scales, observation bias,
Schmidt-Kalman filter

1. Introduction

In atmospheric data assimilation, observations are com-
bined with numerical model data, weighted by their
respective error statistics, to provide a best estimate of
the current atmospheric state, known as the analysis. This
is achieved through comparison of observations with the
numerical model equivalent of those observations. The
errors associated with the observation-model comparison
are the instrument error and representation error (Janji�c
et al., 2018). The representation error consists of the pre-
processing error, the observation operator error and the
error due to unresolved scales that occurs when there is a
mismatch between the numerical model resolution and
the scales resolved by the observation. The error due to
unresolved scales depends on the observation footprint,
which could be smaller or larger than the model grid,

depending on the observation type and choice of model.
For models which contain information on scales smaller
than those observed, the standard approach to account
for scale-mismatch would be to average the model state
over the observation area (Janji�c et al., 2018). However,
for the purposes of this paper, we focus only on situa-
tions where the observation information content includes
smaller scales than can be resolved by the model. In order
to obtain the best analysis from these observations the
representation error must be treated correctly by the data
assimilation system.

Methods of accounting for uncertainty due to unre-
solved scales include, for example, prediction through
ensemble statistics (Karspeck, 2016; Satterfield et al.,
2017) and the use of a stochastic superparameterization
(Grooms et al., 2014). In this manuscript we will consider
two approaches: the standard approach where the uncer-
tainty due to unresolved scales is included in the�Corresponding author. e-mail: z.n.bell@pgr.reading.ac.uk
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observation error covariance matrix (e.g. Hodyss and
Satterfield, 2016; Fielding and Stiller, 2019) and an alter-
native approach where unresolved processes are consid-
ered in state space and hence accounted for through the
state error covariance (Janji�c and Cohn, 2006).

Compensating for representation error through the
standard approach involves using an observation error
covariance matrix that takes into account both the instru-
ment and representation uncertainty. This can then be
used within a standard variational or sequential data
assimilation scheme. Estimates of the observation uncer-
tainty may be obtained using a statistical method, to esti-
mate the entire observation error covariance matrix (e.g.
Desroziers et al., 2005; Stewart et al., 2014; Waller et al.,
2016a, 2016b; Cordoba et al., 2017). Alternatively each
component of the representation error statistics can be
estimated separately and then combined with the instru-
ment error covariance. For example the error due to
unresolved scales may be approximated using high reso-
lution observations (Oke and Sakov, 2008) or high reso-
lution model data (Daley, 1993; Liu and Rabier, 2002;
Waller et al., 2014; Schutgens et al., 2016).

The Schmidt-Kalman filter (SKF) (Schmidt, 1966) is
an example of a filter which uses the statistics of the
unresolved processes in state space, without ever evaluat-
ing the unresolved state itself, to compensate for the error
due to unresolved scales. This approach allows for con-
sideration of flow-dependent correlations between the
resolved errors and the unresolved processes at the cost
of additional assumptions, approximations and increased
computational expense. Janji�c and Cohn (2006) have
shown that the SKF can produce positive results despite
the approximations and assumptions required for imple-
mentation in a geophysical context. In this paper we pro-
vide new results that determine in which observation and
model uncertainty regimes the SKF performs best. In
addition we compare the SKF to two other Kalman fil-
tering approaches.

The SKF is deemed a suboptimal filter as it does not
minimise the mean-square-error of its estimated states
(Janji�c and Cohn, 2006). In contrast, the Kalman filter
that treats all scales is deemed optimal (for linear models
and Gaussian statistics) (Nichols, 2010). In practice, sub-
optimal filters that do not treat all scales are often used.
The analysis error covariances propagated by suboptimal
filters are not representative of the true error statistics
due to omitted or incorrectly specified filter components.
As such, the true analysis error equations have been
derived to evaluate the performance of suboptimal filters
(e.g. Brown and Sage, 1971; Asher and Reeves, 1975;
Asher et al., 1976). In this article we reformulate previous
theory on true analysis error equations to include

representation error (section 4) and evaluate the perform-
ance of the SKF.

A further issue noted by Janji�c and Cohn (2006) is the
potential for the representation error to be biased. This is
because the error due to unresolved scales is sequentially
correlated in time and correlated with the state resolved
by the model. Other authors have circumvented this bias
by careful construction of their numerical model (Janji�c
and Cohn, 2006). However, in operational data assimila-
tion, most observations are biased and the innovations
need to be corrected or the bias accounted for within the
assimilation (Dee, 2005). Bias correction can be incorpo-
rated into the data assimilation algorithm by augmenting
the state vector with a bias term (Friedland, 1969;
Jazwinski, 1970; Ignagni, 1981) which can be estimated
along with the state variables. This method of bias correc-
tion is commonly used with variational data assimilation
systems (e.g. Derber and Wu, 1998; Dee, 2004; Zhu et al.,
2014; Eyre, 2016) but has also been applied with ensemble
data assimilation systems (e.g. Fertig et al., 2009; Miyoshi
et al., 2010; Arav�equia et al., 2011). To the best of our
knowledge a bias correction scheme has yet to be imple-
mented in conjunction with the SKF; in section 7 we intro-
duce a bias-correcting SKF as a new method to compensate
for biases due to unresolved scales.

In summary, the objective of this paper is to investi-
gate under which model and observation error regimes
the SKF is most effective. The theoretical aspects of rep-
resentation error will be reviewed in section 2 with par-
ticular emphasis on the error due to unresolved scales.
Section 3 details how the SKF can be used to account for
error due to unresolved scales and introduces the optimal
Kalman filter (OKF) and a reduced-state Kalman filter
(RKF). In section 4 we state the standard true analysis
error equation and reformulate it to include representa-
tion error for each filter.

To evaluate the performance of the SKF in a numerical
example we use a Gaussian random walk model. The
numerical experiment methodology and model formulation
are described in section 5 and results are presented in sec-
tion 6. Our results show that the SKF provides the largest
improvement in performance compared with the RKF when
there is large error variance due to unresolved scales and
small instrument error variance. In section 7 we discuss
observation bias correction schemes in sequential data
assimilation and introduce a novel SKF with bias correction
scheme. The methodology and model formulation for the
numerical experiments with biased observations is discussed
in section 8 and results are presented in section 9. Our
results show the SKF with bias correction can simultan-
eously treat observation biases and compensate for the error
due to unresolved scales. We summarise and draw conclu-
sions from our results in section 10.
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2. Theoretical framework

In this section we introduce a theoretical framework and
the notation used in this paper. We begin by describing a
numerical model (section 2.1) and observations (section
2.2). In data assimilation, the error statistics used in fil-
ters may not reflect the true uncertainties they are
intended to model. To help distinguish between these two
sets of statistics throughout this manuscript we will define
any true error statistics with a tilde (�). Error statistics
used in or obtained from filter calculations will be
referred to as perceived error statistics and have no tilde.

The mathematical framework used to examine the error
due to unresolved scales in this manuscript is to estimate
the projection of some state from a high, but finite dimen-
sional real vector space, onto a lower dimensional subspace
using observations and knowledge of the system dynamics,
following a similar philosophy to Liu and Rabier (2002)
and Waller et al. (2014). Our approach differs from that of
Janji�c and Cohn (2006) which begins from the standpoint of
infinite dimensional function spaces.

2.1. Model configuration

In this section we introduce the perfect and forecast mod-
els. We assume that the phase-space for the large-scale
dynamics is a subspace of the phase-space for the full
high dimensional system. The complement of the sub-
space for the large-scales will correspond to the phase-
space for the small-scale dynamics. The notation for the
models will be in a partitioned form that separates the
large and small scales. In particular, we denote the true,

complete state at time tk as ð xl, t xs, t ÞTk 2 R
Nt such that

xl, t 2 RNl , xs, t 2 RNs and Nt ¼ Nl þNs: Here, and
throughout this paper, any component with a t-super-
script indicates that it is a true variable. The l- and s-
superscripts correspond to the large- and small-scale
processes within the complete system dynamics. (We have
deviated from the resolved/unresolved nomenclature of
Janjic and Cohn 2006 for clarity, since the different filters
used in our experiments resolve different scales).

An ideal linear model for the true state of a finite
dimensional process can be expressed through the dynam-
ical system

xl, t

xs, t

� �
k
¼ Ml, t Mls, t

Msl, t Ms, t

� �
xl, t

xs, t

� �
k�1

, (2.1)

such that the matrix blocks Ml, t 2 RNl�Nl , Mls, t 2
RNl�Ns , Ms, t 2 RNs�Ns and Msl, t 2 R

Ns�Nl : From a
numerical modelling perspective, this partitioned descrip-
tion of the dynamics would be suited to a pseudospectral
discretization (e.g. Fourier modes).

In numerical weather prediction (NWP), the true mod-
els that govern the evolution of the atmosphere are
unknown and have to be approximated. For our approxi-
mation of the true dynamical system (2.1), we assume
that any subgrid-scale parameterizations used to approxi-
mate the contribution from the small-scale processes to
the large-scale state are contained within the large-scale
model (Janji�c and Cohn, 2006; Janji�c et al., 2018). Hence,

the model block Mls ¼ 0Nl�Ns and our approximate
dynamical model describing the complete system satisfies

xl, t

xs, t

� �
k
¼ Ml 0Nl�Ns

Msl Ms

� �
xl, t

xs, t

� �
k�1

� gl

gs

� �
k
: (2.2)

In (2.2) each model block has the same dimensions as
its true model counterpart. The large- and small-scale

model errors are given by gl 2 RNl and gs 2 RNs respect-
ively. Model errors are assumed to be random and
unbiased with covariance given by

eQ ¼ eQll eQls

eQsl eQss

 !
: (2.3)

Here, using h�i to indicate the mathematical expect-
ation over the corresponding error distribution, the matri-

ces eQ ll � hglðglÞTi 2 RNl�Nl , eQss � hgsðgsÞTi 2 RNs�Ns

and eQ ls � hglðgsÞTi 2 RNl�Ns (with eQls ¼ ðeQslÞT ) are the
true model error covariances of the large-scale, the small-
scale and cross-covariances between the large- and small-
scale, respectively. We note that for the purposes of this
work, the model error distribution is assumed to be sta-

tionary, so that eQ is not a function of time.

Analogously, the complete forecast state ð xl, f xs, f ÞT
2 R

Nt satisfies

xl, f

xs, f

� �
k
¼ Ml 0Nl�Ns

Msl Ms

� �
xl, f

xs, f

� �
k�1

: (2.4)

The forecast errors can then be defined as

el, f

es, f

 !
k

� xl, f

xs, f

 !
k

� xl, t

xs, t

 !
k

¼ Ml 0Nl�Ns

Msl Ms

 !
el, f

es, f

 !
k�1

þ gl

gs

 !
k

,

(2.5)

where el, f 2 R
Nl and es, f 2 R

Ns are the large- and small-
scale forecast errors respectively. The true forecast error
covariance is denoted

ePf
k ¼

ePll, f eP ls, fePsl, f ePss, f

 !
k

: (2.6)

Here, ePll, f
k � hel, fk ðel, fk ÞTi 2 RNl�Nl , ePss, f

k � hes, fk ðes, fk ÞTi
2 RNs�Ns and ePls, f

k � hel, fk ðes, fk ÞTi 2 R
Nl�Ns (with eP ls, f ¼

ACCOUNTING FOR OBSERVATION UNCERTAINTY AND BIAS 3



ðePsl, f ÞT ) are the true forecast error covariances of the
large-scale, the small-scale and cross-covariances between
the large- and small-scale, respectively.

This formulation of the complete finite-dimensional
dynamics allows us to consider several filters with differ-
ent approaches to the treatment of large- and small-
scales. Moreover, we can consider the interactions
between scales and the effect they have on the modelling
of observations.

2.2. Observations and their uncertainties

In this section we express the equations relating the
observations, yk 2 R

p, to the model state in a partitioned
form and describe their uncertainties. For the rest of this
section, we assume that the model state and observations
are valid at the same time, and drop the time subscript,
k. At time tk, the observations are related to the true
model state as

y ¼ Hl, t Hs, t
� � xl, t

xs, t

� �
þ �, (2.7)

where � 2 Rp is the instrument error, assumed to be ran-

dom and unbiased with covariance eRI ¼ h��Ti 2 Rp�p and

Hl, t 2 R
p�Nl and Hs, t 2 R

p�Ns are the true linear observa-
tion operators which map the large- and small-scale states
into observation space respectively. The observation oper-
ator ðHl, t Hs, t Þ is the (linear) finite-dimensional counter-
part to the continuum observation operator of Janji�c and
Cohn (2006). We will not consider nonlinear observation
operators in the remainder of this paper.

Throughout this paper, we assume that there is no pre-
processing error. Hence, we will be concerned with the
two cases described in sections 2.2.1 (all scales analysed)
and 2.2.2 (large scales analysed) below. Case 1 shows the
form of the representation error for filters that resolve all
scales and is pertinent to the theoretical optimal Kalman
filter discussed in section 3.2. Case 2 shows the form of
the representation error for filters typically used in oper-
ational practice and is pertinent to the reduced-state
Kalman filter and the Schmidt-Kalman filter discussed in
sections 3.3 and 3.4 respectively.

2.2.1. Case 1: All scales analysed. In this case we
assume that both the large- and small-scale states are esti-
mated. The total observation error (observation departure
from the true state), eo, can be expressed as

eo ¼ y� Hl Hs
� � xl, t

xs, t

� �
, (2.8)

where Hl 2 R
p�Nl and Hs 2 R

p�Ns are the blocks of the
observation operator used by the filter, acting on the

large- and small-scale state components, respectively.
Using (2.7), we rewrite eo as

eo ¼ Hl, t Hs, t
� � xl, t

xs, t

 !
þ �� Hl Hs

� � xl, t

xs, t

 !
,

¼ Hl, t �Hlð Þxl, t þ Hs, t �Hsð Þxs, t þ �,

¼ cl þ cs þ �,

(2.9)

where cl � ðHl, t �HlÞxl, t is the large-scale observation
operator error and cs � ðHs, t �HsÞxs, t is the small-scale
observation operator error. Thus, the representation error
for this case consists solely of observation operator error,

cl þ cs: The observation operator errors, cl and cs, will
each be assumed to be unbiased, so that in this case, the
representation error is also unbiased. The representation

error covariance for this case will be denoted by eRG ¼
hðcl þ csÞðcl þ csÞTi 2 Rp�p: The total observation error

covariance is given by eR ¼ eRI þ eRG
, where we have

assumed that the representation error and instrument
error are mutually uncorrelated.

2.2.2. Case 2: Large scales analysed. In this case, we
assume that only the large-scale state is estimated such
that

eo ¼ y�Hlxl, t, (2.10)

where the observation operator used consists only of the
block acting on the large-scales. The decomposition of eo

can be obtained by setting Hs ¼ 0p�Ns in (2.9):

eo ¼ cl þHs, txs, t þ �: (2.11)

The filter observation operator does not act on the
small scales, so the term cs is replaced by Hs, txs, t, the
error due to unresolved scales. The representation error

for Case 2 is thus cl þHs, txs, t with covariance eRH ¼
hðcl þHs, txs, tÞðcl þHs, txs, tÞTi 2 Rp�p: Equations (2.10)
and (2.11) are analogous to equation (1) in Janji�c et al.
(2018) with the pre-processing error omitted. The com-
plete observation error covariance for Case 2 is given byeR ¼ eRI þ eRH

, where we have assumed that the represen-
tation error and instrument error are mutually uncorre-

lated. As in Case 1, cl is assumed to be unbiased.
However, we will see in section 2.3 that the expected
value of Hs, txs, t is likely to be non-zero.

2.3. Bias due to unresolved scales

Analysing only the large-scales will result in an error due
to unresolved scales (section 2.2.2) that is sequentially
correlated in time and correlated with the resolved state,
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leading to a potential bias (Janji�c and Cohn, 2006).
Assuming that the large-scale observation operator is
unbiased, taking the expectation of the error due to unre-
solved scales, (2.11), (and reintroducing the time subscript
k) results in

heoi ¼ hHs, txs, tk i, (2.12)

where h�i denotes the mathematical expectation over the
distribution of representation errors at time k. Using
dynamical system (2.1), repeated substitution for the
equation governing xs, t into the expected error due to
unresolved scales yields

hHs, txs, tk i ¼ hHs, tðMsl, txl, tk�1

þMs, tðMsl, txl, tk�2

þMs, tð:::ðMsl, txl, t0 þMs, tðxs, t0 ÞÞ:::ÞÞÞi,
(2.13)

Here the underlined terms represent the contribution
from the large scales. For many non-trivial models, these
terms will not be identically zero, and potentially intro-
duce a bias even if the initial value for the small-scale

state is zero, xs, t0 ¼ 0: For example, Janji�c and Cohn
(2006) solved a model of non-divergent linear advection
on a sphere using a truncated expansion in spherical har-
monics. Introducing a shear flow results in a dynamical
system where the unresolved small-scales do not directly
influence the resolved large-scales, but the large-scales
influence the small-scales. This yields an error and bias
due to unresolved scales. Janji�c and Cohn (2006) were
able to mitigate the bias using specific initial conditions.
However, this experimental freedom would not be avail-
able in less-idealized situations. Therefore, when account-
ing for the unresolved scales in data assimilation we must
also determine and treat any bias arising. In the new
results in sections 5-6 below, we carefully construct our
model to avoid bias due to unresolved scales. However,
we revisit this problem in sections 7-9 where we use filters
with bias-correction schemes.

3. Sequential linear filters and representation
uncertainty

In this section we describe the general linear filtering
framework that we use for data assimilation in our theor-
etical investigations and numerical experiments. We con-
sider three filters in more detail: an optimal Kalman filter
(OKF) that takes account of all scales; a reduced-state
Kalman filter (RKF) that disregards the small-scales; and
the Schmidt-Kalman filter (SKF) that provides analyses
of the large-scale state through consideration of both the
large- and small-scale uncertainties.

3.1. A linear filter

A linear filter algorithm can be divided into analysis
update and model prediction steps. The general form of
the analysis update at time tk, is given by

xak ¼ xfk þ Kkd
o, f
k , (3.1)

where xak is the analysis (state estimate), xfk is the forecast

state, Kk is the gain matrix and do, fk ¼ yk �Hkx
f
k is the

innovation, defined as the observation-minus-forecast
departure. In this general setting we have not defined the
dimensions of the vectors and matrices in (3.1), as this
will depend on the specific choice of filter. For example,
the state x in equation (3.1) could be either the complete

state ðxl xs ÞT or just the large-scale state xl : There are

various approaches to determine the gain matrix which
will be discussed in sections 3.2, 3.3 and 3.4.

The perceived analysis error covariance update calcl-
uated by the filter at time tk is given by

Pa
k ¼ I� KkHkð ÞPf

k, (3.2)

where I is the identity matrix, Hk is the observation oper-

ator and Pf
k is the perceived forecast error covariance.

Equation (3.2) is known as the short form of the analysis
error covariance update. This equation only provides the
correct estimate of the analysis error covariance if
the background and observation error statistics used in
the filter reflect the true error statistics. The use of a sub-
optimal gain and the short form update equation (3.2)
will result in the filter producing incorrect error statistics.
The true error statistics will be derived in section 4.

For the model prediction step, the forecast state at
time tkþ1 is evolved from the analysis at the previous
time-step and is given by

xfkþ1 ¼ Mxak, (3.3)

where M is a linear model. A model error term is not
included in the forecast state update as linear filters esti-
mate the mean state and we have assumed that the model
error is unbiased. However, the error in the model M is
accounted for in the forecast error covariance update
given by

Pf
kþ1 ¼ MPa

kM
T þQ, (3.4)

which will be discussed further in section 4. We note that
(3.4) will only produce correct error statistics when Pa

k

and Q are equal to their true statistics counterparts.
Equations (3.1)–(3.4) form the core components of the

linear filter algorithm. In the following sections we discuss
three linear filters, each based on the Kalman filter
(Kalman, 1960), that we will use in this paper. Table 1

6 Z. BELL ET AL.



summarizes the key vectors and matrices used in these three
Kalman filters.

3.2. The optimal kalman filter (OKF)

For the optimal Kalman filter (OKF), we assume that we
are able to model the processes for all scales and know
the correct error statistics for the initial state, observa-
tions and model. Therefore, the perceived error statistics
for the OKF will be equivalent to the true error statistics.
The OKF simultaneously updates the large- and small-

scale states, xl 2 R
Nl and xs 2 R

Ns , so that the analysis
update takes the form

xl, a

xs, a

� �
¼ xl, f

xs, f

� �
þ Kl

Ks

� �
y� Hl Hs

� � xl, f

xs, f

� �� 	
,

(3.5)

cf. (3.1). The gain matrix for the OKF is partitioned into

large- and small-scale components Kl 2 R
Nl�p and Ks 2

R
Ns�p respectively, and is given in Table 1. This is the

optimal Kalman gain which minimises the trace of the
analysis error covariance (e.g. Nichols, 2010). The ana-
lysis error covariance update is calculated using (3.2) with
state error covariances with the same block structure as
the forecast error covariance (2.6).

As the OKF filters all scales, the total observation
error is described by Case 1 (all scales analysed, section
2.2.1). Hence, the observation error covariance for the

OKF is R ¼ RI þ RG:

For the OKF forecast step we use the matrix

Ml 0Nl�Ns

Msl Ms

� �
(3.6)

as our forecast model in (3.3) and the partitioned model
error covariance given in Table 1 in the forecast error
covariance prediction (3.4).

In summary, the analysis and forecast updates for the
OKF state and covariance are a partitioned form of (3.1)
- (3.4). By treating all scales in the assimilation the OKF
has no error due to unresolved scales in the associated
observation equation. However, due to computational
constraints and inadequate knowledge of small-scale
processes it is not possible to apply this technique in
practice. Hence, methods that approximate the influence
of small-scale processes must be employed instead.

3.3. The reduced-state kalman filter (RKF)

The suboptimal Kalman filter which estimates only the
large-scale state and completely neglects the modelling of
small-scale processes will be referred to as the reduced-
state Kalman filter (RKF).

The analysis and forecast update equations for the
RKF are simply the linear filter equations (3.1)-(3.4)
where, as described in Table 1, we use the large-scale
state, error covariances and observation operator. Thus,
the forecast innovation is

do, f ¼ y�Hlxl, f ¼ �þ cl þHs, txs, t �Hlel, f , (3.7)

where the second inequality can be established by adding

and subtracting the term Hlxl, t: Assuming each error has
zero-mean, taking the expectation of the outer product of
(3.7) yields the true innovation covariance (i.e. all contri-
buting error covariances are true error statistics).
However, the innovation covariance used by the RKF is
given by

D ¼ HlPll, f ðHlÞT þ RI þ RH , (3.8)

where the large-scale forecast error covariance, instru-
ment error covariance and representation error covari-
ance are perceived error statistics. The influence of any
small-scale processes is now accounted for through the

representation error covariance RH which needs to be
approximated.

Reduced-state methods form an attractive approach in
situations where computational expense is an important
consideration. However, it is necessary to approximate

the representation error covariance, RH : Hence, the
Kalman gain for the RKF will not minimise the analysis
error covariance and the filter will be suboptimal.

3.4. The Schmidt-Kalman filter (SKF)

The Schmidt-Kalman Filter (SKF) estimates only the
large-scale state, but the statistics of any unmodelled
processes are used to determine the Kalman gain for the
filtered state (Schmidt, 1966; Janji�c and Cohn, 2006). A
summary of the relevant equations is included in Table 1.

As only the large-scale state is estimated the forecast

innovation is computed using the large-scale state, xl, f ,

and observation operator, Hl: To determine the innov-
ation covariance we start with the innovation (3.7) and

add and subtract the term ðHl Hs Þð xl, t xs, t ÞT : This
allows us to write the innovation in the form

do, f ¼ �þ cl þ cs þ Hl Hs
� � �el, f

xs, t

� �
: (3.9)

The innovation is now written in terms of the observa-
tion errors corresponding to case 1 (where all scales are
analysed, see section 2.2.1), the large-scale forecast error

mapped into observation space, Hlel, f , and the term
Hsxs, t, the true small-scale state mapped into observation
space. Assuming each error and xs, t has zero mean, tak-
ing the expectation of the outer product of (3.9) gives the
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true innovation covariance. The innovation covariance
used by the SKF is given by

D ¼ Hl Hs
� � Pll, f Pls, f

Psl, f Cs

� � ðHlÞT
ðHsÞT

 !
þ RI þ RG:

(3.10)

Here, we have abused our notation, to write Pls, f as

the perceived approximation of h�el, f ðxs, tÞTi, such that

Psl, f ¼ ðPls, f ÞT : Using this notation for the cross-cova-
riances of the SKF is common amongst other literature
on the filter (e.g. Janji�c and Cohn, 2006; Janji�c et al.,
2018). Following Janji�c and Cohn (2006), we employ a
prescribed error covariance Cs as a time-independent

approximation of hxs, tðxs, tÞTi: We note that as the small-
scale error covariance is prescribed, the innovation
covariance is an inexact approximation. The innovation
covariance for the SKF is theoretically the same as the
innovation covariance for the RKF (3.8) but expressed in
a different form that includes contributions from the
small scale processes.

The analysis state update for the SKF is given by

xl, ak ¼ xl, fk þ Kl
k yk �Hl

kx
l, f
k

� �
, (3.11)

where Kl
k ¼ ðPll, f

k ðHlÞT þ Pls, f
k ðHsÞTÞD�1

k is the Schmidt-

Kalman large-scale gain. To obtain an analysis error

covariance update equation we augment Kl with Ks ¼
0Ns�p and substitute into equation (3.2). This is justified

as the unfiltered state is assumed to have a small magni-
tude. Large uncertainty in the small-scale state or a small
magnitude observation operator for this state would also
justify this assumption (Simon, 2006). As the short-form
analysis error covariance update for the SKF is not sym-

metric, we calculate Pll, a and Pls, a through the short-form

update only and set Psl, a
k ¼ ðPls, a

k ÞT : Thus, the SKF ana-

lysis error covariance update equations are

Pll, a
k ¼ INl � Kl

kH
l
k

� �
Pll, f
k � Kl

kH
s
kP

sl, f
k , (3.12)

Pls, a
k ¼ INl � Kl

kH
l
k

� �
Pls, f
k � Kl

kH
s
kC

s, (3.13)

Psl, a
k ¼ Pls, a

k

� �T
: (3.14)

We note that the term �Kl
kH

s
k will usually be non-zero

for the SKF. This term couples the large-scale uncertainty
to the small-scale variability. If this term were zero, the
large-scale state and uncertainty estimates produced by
the RKF and SKF may still differ because of the differ-
ing innovation covariances between the filters.

The SKF treatment of the forecast step has a similar
philosophy to the analysis step. The state prediction (3.3)

is obtained through evolving the large-scale state xl with

the large-scale forecast model Ml :

xl, fkþ1 ¼ Mlxl, ak : (3.15)

The large-scale and cross-covariance blocks of the fore-
cast error covariance are calculated using the complete

Table 2. Matrices and vectors used in the true error calculations for Case 1 and 2 described in sections
4.1 and 4.2. The tildes indicate true error covariances. Case 1 corresponds to analysing all scales and
includes the OKF. Case 2 corresponds to analysing the large scales only and includes the RKF and SKF.
The true analysis error equation, analysis error covariance and forecast error covariance for each case are
obtained by substituting the corresponding components into equations (4.1), (4.2) and (4.3) respectively.

Case 1 (OKF) Case 2 (SKF and RKF)

Analysis Errors: ea el, a

es, a

� �
el, a

es, a

� �
Model Errors: g gl

gs

� �
gl

gs

� �
Observation Errors: eo �þ cl þ cs �þ cl þHs, txs, t

Kalman Gain: K Kl

Ks

� �
Kl

0Ns�p

� �
Observation Operator: H Hl Hs

� �
Hl 0p�Ns

� �
Model: M Ml 0Nl�Ns

Msl Ms

� �
Ml 0Nl�Ns

Msl Ms

� �
State Error Covariance: eP eP ll eP lsePsl ePss

 ! eP ll eP lsePsl ePss

 !
Observation Error Covariance: eR eRI þ eRG eRI þ eRH

Model Error Covariance: eQ eQ ll eQ ls

eQsl eQss

 ! eQ ll eQ ls

eQsl eQss

 !
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forecast model and model error covariance in (3.4). The
SKF forecast error covariance update equations are

Pll, f
kþ1 ¼ MlPll, a

k Mlð ÞT þQll, (3.16)

Pls, f
kþ1 ¼ Ml Pll, a

k Mslð ÞT þ Pls, a
k Msð ÞT

� �
, (3.17)

Psl, f
kþ1 ¼ Pls, f

kþ1

� �T
: (3.18)

The prescribed small-scale error covariance Cs is
assumed constant in time and is not updated.

The appeal of the SKF is in its ability to compensate
for small-scales without estimation of the small-scale
state. Practical implementation of the SKF would require
the filter to be adapted to nonlinear models. However,
even for linear systems, the models evolving the small-
scale processes would be unknown and their influence on
the error covariances would need to be quantified.
Additionally, the propagation of the state cross-covarian-
ces poses a considerable computational cost.

3.5. Discussion

The OKF, SKF and RKF represent three different
approaches for dealing with observation uncertainty due
to unresolved scales (see Table 1). The OKF analyses all
scales, thus avoiding the error due to unresolved scales
altogether, while the RKF completely disregards the
small-scale processes and accounts for the error due to
unresolved scales through the representation error covari-
ance matrix. The SKF, however, takes a compromise
approach where only the large-scale state is estimated,
but the uncertainty in all-scales is accounted for in the
estimation. Additionally, the SKF accounts for the flow-
dependence of the correlations between the large-scale
errors and small-scale processes (albeit approximately)
through the cross-covariances in the analysis and forecast
error covariances given in equations (3.13), (3.14), (3.17)
and (3.18). Applications where it is a poor approximation
to neglect these cross-covariances will benefit the most
from using the SKF (as opposed to the RKF where these
cross-covariances are neglected).

4. True analysis error equations

A standard metric for assessing the quality of a data
assimilation scheme is through examination of the magni-
tude of its analysis errors (e.g. Liu and Rabier, 2002).
Under an unrealistic and restrictive set of conditions the
Kalman filter is known to be optimal in a minimum
mean-square-error sense and to produce the true error
statistics describing its analysis and forecast (e.g. Todling
and Cohn, 1994; Nichols, 2010). In contrast, both the
SKF and RKF described in section 3 will incorrectly

estimate the true analysis and forecast error covariances
due to their treatment of the small-scales in the filter cal-
culations. In this section we extend the existing literature
on the true analysis error equations to include representa-
tion error so that we may evaluate the analysis obtained
through the SKF and RKF.

To obtain the true analysis error equation for a linear
filter we assume that we have exact knowledge of the
truth and that both the true and filter models and obser-
vation operators are linear. Under this regime, the true
analysis error at time tk has been derived by Moodey
(2013) and is given by

eak � xak � xtk ¼ I� KkHkð ÞMeak�1 þ I� KkHkð Þgk þ Kkeok,

(4.1)

where eak is the analysis error, gk is the model error (see

section 2.1), eok is the total observation error which will

be specified for different cases in subsections 4.1� 4.2
and Kk and Hk are the Kalman gains and observation
operators for the analysis state updates respectively.
Therefore, the Kalman gain is calculated from the error
statistics perceived by a filter. We assume that eak�1, gk

and eok each have zero-mean and are mutually uncorre-

lated. (We note that this assumption excludes a consider-
ation of bias due to unresolved scales. However, this is
considered further in section 7). Under these assumptions
the true analysis error covariance is obtained through
taking the expectation of the outer product of equation
(4.1) with itself to give

ePa
k � eak eak

� �TD E
¼ I� KkHkð ÞePf

k I� KkHkð ÞT þ Kk
eRkKT

k ,

(4.2)

where

ePf
k � efk efk

� �T
 �
¼ MePa

k�1M
T þ eQ: (4.3)

Here we remind the reader that we have used tildes to
indicate true error covariances, to help distinguish these
from the covariances perceived by the filters, which may
be suboptimal. Equation (4.2) is known as the Joseph-
formula (Gelb, 1974). The true analysis error covariance
(4.2) is valid for any gain matrix. The Joseph-formula is
equivalent to the short form analysis error covariance
(3.2) for the optimal case (OKF) in exact arithmetic.

The true analysis error covariance can be calculated
separately from the assimilation. In subsections 4.1� 4.2
we use (4.1) and (4.2) to determine the true analysis error
equations and error covariances for Cases 1 and 2
described in sections 2.2.1 and 2.2.2. Case 1 corresponds
to analysing all scales and includes the OKF. Case 2 cor-
responds to analysing the large-scale state only and
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includes the RKF and SKF. Table 2 summarizes the
matrices and vectors used in the true error calculations.

4.1. Case 1: true analysis error covariance when all
scales are filtered

To obtain the true analysis error equation we assume
that we have complete knowledge of all scales as with the
OKF. As in section 2.2.1 the observation error will con-
sist of instrument error, �, and the observation operator

error for large- and small-scales, cl þ cs: Under these
assumptions the true analysis error equation will be a
partitioned form of equation (4.1) and the true analysis
error covariance will be a partitioned form of (4.2) with
the components given in column 1 of Table 2.

4.2. Case 2: true analysis error covariance when only
large-scales are filtered

The true analysis error equation for case 2 applies to fil-
ters that estimate the large-scale state only like the RKF
and SKF. Using equation (4.1) and the state gain matri-
ces and observation operators, the large-scale analysis
error for the RKF and SKF is given by

el, ak � xl, ak � xl, tk ¼ INl � Kl
kH

l
k

� �
Mlel, ak�1

þ INl � Kl
kH

l
k

� �
glk þ Kl

k �k þ clk þHs, t
k xs, tk

� �
:

(4.4)

We note that the observation errors correspond to
case 2 described in 2.2.2 as both the RKF and SKF fil-
ter the large-scale state only. Hence, the effect of the

small-scale processes on el, ak in equation (4.4) is deter-

mined through the error due to unresolved scales

Hs, txs, tk : We observe that the true large-scale error

covariance may thus be written in terms of the repre-
sentation error covariance as

eP ll, a
k � el, ak ðel, ak ÞT

D E
¼ INl � Kl

kH
l
k

� �eP ll, f
k INl � Kl

kH
l
k

� �T
þ Kl

k
eRI
k þ eRH

k

� �
Kl

k

� �T
: (4.5)

However, the true error statistics contributing to the
true analysis error covariance are unknown in practice
making the use of (4.5) to evaluate filter performance
unfeasible. For theoretical experiments where most error

statistics can be prescribed, determining eRH
k requires a

Monte Carlo approach due to its dependence on xs, t:
Alternatively, a different form of the analysis error equa-
tion may be more practical.

Assuming we know the true behaviour for the small-
scales we can express the true analysis error equation for
the RKF and SKF as

el, a

es, a

 !
k

¼ INl � Kl
kH

l
k 0Nl�Ns

0Ns�Nl INs

 !
el, f

es, f

 !
k

þ Kl
k

0Ns�p

 !
�k þ clk þHs, txs, tk

� �
,

(4.6)

where el, fk ¼ Mel, ak�1 þ glk and es, fk ¼ Mslel, ak�1 þMses, ak�1 þ
gsk: We note that as the small-scale state isn’t estimated

the small-scale gain is a zero matrix of dimension Ns � p:
We also note that, while the large- and small-scale errors
ostensibly appear uncoupled in equation (4.6), they are in

fact coupled as es, ak and es, fk each depend on xs, tk : Adding

and subtracting the term Kl
kH

s
ke

s, f
k from the large-scale

component of the analysis error, (4.6) may be written as

el, a

es, a

 !
k

¼ INt �
Kl

k

0Ns�p

 !
Hl Hs
� � !

el, f

es, f

 !
k

þ Kl
k

0Ns�p

 !
�k þ clk þHs, txs, tk þHses, fk

� �
:

(4.7)

Using the definitions of the small-scale observation
operator error (2.9), the error due to unresolved scales
(2.11) and the small-scale forecast error (3.9) we find that

Hs, txs, tk þHses, fk ¼ csk þHsxs, fk : (4.8)

Thus the right-hand-side of (4.7) can be evaluated
without knowledge of the error due to unresolved scales
specifically. Instead, this can be written in terms of the
observation operator error and a small-scale forecast:

el, a

es, a

 !
k

¼ INt �
Kl

k

0Ns�p

 !
Hl Hs
� � !

el, f

es, f

 !
k

þ Kl
k

0Ns�p

 !
�k þ clk þ csk þHsxs, fk

� �
:

(4.9)

The partitioned case 2 error equation (4.9) can be used
to obtain the true analysis error covariance for the SKF
and RKF without knowing the full representation error

covariance eRH
: However, when using this form of the

analysis error equation to obtain the true error statistics

the correlations between xs, f and es, f may be non-negli-

gible. We note that, while xs, f and xs, t will also be
unknown in practice, they could be approximated offline
with high-resolution models.
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5. Experiment methodology

5.1. Gaussian random walk model

We now consider the methodology for numerical experiments
where we apply the three filters to the simple model system

xl

xs

 !
kþ1

¼ 1 0

Msl exp ð�1=2Þ

 !
xl

xs

 !
k

� gl

gs

 !
k

,

yk ¼ 1 1
� � xl

xs

 !
k

þ �k,

(5.1)

such that glk � ð0, QlÞ, gsk � ð0, QsÞ, and �k � ð0,RIÞ
(Brown and Hwang, 2012). This system uses one variable
for the large-scale state, xl, and one variable for the small-
scale state, xs. The large-scale state xl and small-scale state
xs are random walk variables driven by the errors gl and gs

whose structures are determined by the variances Ql and Qs

respectively. There are no cross-covariances in the model

error statistics. The model component Msl is the contribu-
tion from the large-scale processes to the small-scale state.
The observations will be taken to be the sum of the large-
and small-scale states plus instrument error.

The random walk model (5.1) will first be used for a
“nature run” from which observations can be created. The
filters described in section 3 will then be used to assimilate
these observations and the true large-scale analysis error
variance calculated at the end of the assimilation window.
As the RKF and SKF are suboptimal, they propagate
inexact error variances. Therefore, the true error variances
for the RKF and SKF are calculated using (4.9) to provide
a comparison between their performances.

Through our experimental design we are able to easily
control the magnitude of the observation error due to
unresolved scales by adjusting Qs: The relationship
between Qs and the error due to unresolved scales is
described in section 5.3. This framework also allows for
the determination of the optimal Cs as well as the sensi-
tivity of the SKF to this modelled variance.

5.2. Initial conditions and filter parameters

For our experiments, we choose the initial conditions for

the true state (nature run) to be xl0 ¼ 10 and xs0 ¼ 0 so
that the true resolved state is an order of magnitude
larger than the unresolved state. Setting the small-scale
true state to zero also ensures that the representation
errors are initially unbiased.

We set the initial conditions for the forecast state and
forecast error covariance to be

xf0 ¼ xl, f0
xs, f0

0@ 1A ¼ xl0 þ al

xs0 þ as

 !
and

Pf
0 ¼

Pll, f
0 Pls, f

0

Psl, f
0 Pss, f

0

0@ 1A ¼ 1 0

0 0:1

 ! (5.2)

where al � Nð0, Pll, f
0 Þ and as � Nð0, Pss, f

0 Þ are perturba-
tions from the true states. We have assumed that the initial
large- and small-scale forecast errors are uncorrelated.

For our first set of experiments we set the model com-

ponent Msl ¼ 0 so that the representation errors remain

Fig. 1. Contour plot of the values of Cs that give the minimum
true large-scale analysis error variance at the final assimilated
observation for the SKF for different ratios of Qs and RI :

Fig. 2. (a): The optimal Cs values when RI ¼ 0:1 (dashed line)
and RI ¼ 0:5 (dotted line) as functions of Qs: The grey region
shows all points between S (lower edge) and 2S (upper edge) for
different values of Qs: (b): The effect of changing Cs on the final
true large-scale analysis error covariance for the SKF (solid line)
when Qs ¼ 0:35 and RI ¼ 0:1: Also shown are the OKF and
RKF true large-scale analysis error variance (lower dashed line
and upper dotted line respectively). The grey region shows all
points between Cs ¼ S (left edge) and Cs ¼ 2S (right edge). The
optimal value of Cs (i.e. the minimum of the solid line) lies in
this region.
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unbiased throughout the assimilation. The large-scale

model error variance, Ql ¼ 1, is used throughout our
experiments while Qs will vary for different experiments.

Observations are assimilated every time-step. The true
observation operator is H ¼ ð 1 1 Þ which is used by all
three filters; this ensures that there is no observation
operator error. Unless otherwise specified, the instrument

error variance is set to RI ¼ 0:1, and eRI
k ¼ RI so that

each filter correctly accounts for the instrument error.

For the RKF, we set RH ¼ 0 so that the filter completely
ignores the small-scale processes. The prescribed small-
scale error variance Cs is varied throughout our
experiments.

To calculate the true analysis error variance with (4.9),

we neglect the variance of xs, f and the correlations

between xs, f and es, f as the solution for xs, f is exponen-
tially decaying with time. This method of calculating the
true analysis error covariance has been validated against
a Monte Carlo approach.

5.3. Determining the small-scale variability over the
assimilation window

For the SKF and RKF, which do not update the small-
scale state, the true small-scale analysis and forecast error

statistics are equal at the same time-step. Setting Msl ¼ 0,

the true small-scale error covariance, denoted ePss
, is

evolved through the difference equation

ePss
k ¼ MsePss

k�1ðMsÞT þ eQs
: (5.3)

For the Gaussian random walk model, we may use a
scalar version of this equation, given by

ePss
k ¼ ðMsÞ2ePss

k�1 þ eQs ¼ ðMsÞ2kePt
0 þ

Xk�1

n¼0

ðMsÞ2n eQs
,

(5.4)

where ePss
0 ¼ ePss, f

0 and Ms ¼ exp ð�1=2Þ: Noting that
the summation term in (5.4) is a geometric series we can

express ePss
k as

ePss
k ¼ e�kePss

0 þ 1 � e�k

1 � e�1
eQs

: (5.5)

For large k, the first term in equation (5.5) decays to

zero while the second term tends to the limit eQs
=ð1�

e�1Þ: Hence, after a burn-in period the error due to unre-
solved scales for the SKF and RKF is primarily deter-

mined by the size of eQs
and increases each time-step.

6. Numerical experiments

In this section we apply the OKF, RKF and SKF to the
random walk model defined in section 5.1 with filter

Fig. 3. (a): Comparison of the RKF to the OKF in terms of
relative error percentage given by equation (6.1). (b): Comparison
of the SKF with optimal Cs to the OKF at the final time-step in
terms of relative error percentage.

Fig. 4. (a): Difference between the perceived and true analysis
error variances at the final time-step for the SKF with optimal
Cs: (b): Difference between the perceived and true analysis error
variances at the final time-step for the RKF.

12 Z. BELL ET AL.



parameters and error statistics assumptions detailed in
section 5.2.

6.1. Determining the optimal Cs

Before using the SKF, we first need to approximate the
matrix Cs (see Table 1). To find the optimal value of Cs

over the whole assimilation window we carry out numer-

ical experiments for a range of values of RI and Qs: Both
of these parameters will affect the magnitude of the true

large-scale analysis error variance. For each ðRI , QsÞ
parameter pair, we test a number of values of Cs to
determine the value of Cs which gives the smallest true
large-scale analysis error variance at the final assimilated
observation. As we are calculating the variances only, the
calculation is deterministic and the choice of noise realisa-
tion is irrelevant. For this experiment, we assimilate 15
observations. We start with Cs ¼ 0 and increase Cs in
steps of DCs ¼ 0:001 until Cs ¼ 1:

The optimal values of Cs that produce the minimum
large-scale analysis error variance for the SKF at the final
time-step are shown in Fig. 1. The optimal value of Cs

increases as both RI and Qs increase. In particular, the
optimal value of Cs is most sensitive to any increase in
Qs as the error due to unresolved scales is primarily
determined by this error variance in our model. While

not as sensitive, we find that large RI also affects the
optimal value of Cs: This is because the optimal value of

Cs is a function of RI and Ql after the initial time. We

also find that for small RI and Qs the optimal value of

Cs over the whole assimilation window is similar to ePss

given by equation (5.5) for the final time-step. For large

RI and Qs, the optimal value of Cs is approximately 1.4

times larger than ePss
evaluated at the final time-step.

In operational settings we would not be able to opti-
mise Cs in this way. However, it may be possible to
approximate part of the representation error covariance

Table 3. The filter matrices and vectors for the SKFbc and RKFbc. The equations for the the two filters are obtained through
substituting these terms into (3.1)–(3.4).

RKFbc SKFbc

State: x xl

xb

� �
2 R

Nt
xl

xb

� �
2 R

Nt

State error covariance: P Pll Plb

Pbl Pbb

� �
2 R

Nt�Nt Pll Plb Pld

Pbl Pbb Pbd

Pdl Pdb Cd

0B@
1CA 2 R

Na�Na

Observation operator: H Hl Hb
� � 2 R

p�Nt Hl Hb Hd
� � 2 R

p�Na

Observation error covariance: R RI þ RH 2 R
p�p RI þ RG 2 R

p�p

Innovation: do, f
y� Hl Hb

� � xl, f

xb, f

� �
y� Hl Hb

� � xl, f

xb, f

� �
Innovation covariance: D

Hl Hb
� � Pll, f Plb, f

Pbl, f Pbb, f

� �
Hlð ÞT
Hbð ÞT

 !
þ R

Hl Hb Hd
� � Pll, f Plb, f Pld, f

Pbl, f Pbb, f Pbd, f

Pdl, f Pdb, f Cd

0B@
1CA Hlð ÞT

Hbð ÞT
Hdð ÞT

0B@
1CAþR

Kalman gain: K Kl

Kb

� �
¼ Pll, f Plb, f

Pbl, f Pbb, f

� �
Hlð ÞT
Hbð ÞT

 !
D�1

State update

Kl

Kb

� �
¼ Pll, f Hlð ÞT þ Plb, f Hbð ÞT þ Pld, f Hdð ÞT

Pbl, f Hlð ÞT þ Pbb, f Hbð ÞT þ Pbd, f Hdð ÞT
 !

D�1

Covariance update

Kl

Kb

Kd

0B@
1CA ¼

Pll, f Hlð ÞT þ Plb, f Hbð ÞT þ Pld, f Hdð ÞT
Pbl, f Hlð ÞT þ Pbb, f Hbð ÞT þ Pbd, f Hdð ÞT

0Ns�p

0B@
1CAD�1

Forecast model: M Ml 0Nl�Ns

Msl Ms

� �
2 R

Nt�Nt
State update

Ml 0Nl�Ns

Msl Ms

� �
2 RNl�Nl

Covariance update

Ml 0Nl�Ns
0Nl�Ns

Msl Ms 0Ns�Ns

0Ns�Nl
0Ns�Ns

Ms

0B@
1CA 2 RNa�Na

Model error covariance: Q Qll 0Nl�Ns

0Ns�Nl
0Ns�Ns

� �
2 R

Nt�Nt Qll 0Nl�Ns
Qls

0Ns�Nl
0Ns�Ns

0Ns�Ns

Qsl 0Ns�Ns
Qss

0B@
1CA 2 RNa�Na
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using high resolution observations (Oke and Sakov, 2008)
or model data (Waller et al., 2014) and use these approxi-
mate representation error values to guide the choice of
Cs: To mimic this situation in our experiments, we create
an ensemble of 50,000 realizations of xs for the length of
the assimilation windows using the random walk model
(5.1) and calculate the variance, averaged over the whole
ensemble and time. The variance of this ensemble will be
denoted S. The variance, S, represents an approximation
to the total small-scale variability over the assimilation
window. We now compare the values of Cs computed in
Fig. 1 with the values of S.

Figure 2(a) shows the optimal Cs values when RI ¼ 0:1

(dashed line) and RI ¼ 0:5 (dotted line) for different val-
ues of Qs: The grey region shows all points between S
and 2S. As Qs is increased the variance S also increases.
Both optimal Cs lines lie within the shaded region for
nearly all Qs: We note that when there is little small-scale
variability (i.e. Qs � 0) the optimal Cs values are less
than S but both are close to zero. Figure 2(b) shows the
effect of changing Cs on the SKF true large-scale analysis

error variance (solid line) when RI ¼ 0:1 and Qs ¼ 0:35
in comparison to the true large scale analysis error var-
iances for the RKF and OKF. Thus, for these experi-
ments, a reasonable rule of thumb to avoid areas where
the SKF under- or overcompensates for the error due to
unresolved scales, is to choose S < Cs < 2S:

6.2. Comparison of the SKF with the RKF and OKF

Using the optimal values of Cs calculated in Fig. 1, we
now carry out experiments comparing the SKF and RKF

for a range of values of RI and Qs relative to the OKF.
The results are illustrated in terms of relative error per-
centage for the RKF in Fig. 3a and the SKF in Fig. 3b.
The relative error percentage is defined as

relative error percentage ¼
eP ll, a
RKF=SKF � eP ll, a

OKF

��� ���
eP ll, a
OKF

� 100%,

(6.1)

where j � j indicates the absolute value and each term is
evaluated at the end of the assimilation window. In these
experiments, the SKF always has a true analysis error
variance smaller than or equal to the RKF. When there
is no error due to unresolved scales (i.e. Qs ¼ 0) we have
that Cs ¼ 0 is the optimal value for Cs and the SKF
would reduce to the RKF. The largest relative error per-
centages for both the RKF and SKF occur when there is
large uncertainty due to unresolved scales (large Qs) and

small RI and the smallest differences are when Qs is

small. We also find that larger values of RI limit the

difference in performance between the RKF and SKF
with the OKF. Therefore, the benefits of using the SKF
are most apparent when there is considerable error due
to unresolved scales and small instrument error.
Comparing Fig. 3a to Fig. 3b we see that, for any fixed

value of RI , as the uncertainty due to unresolved scales
is increased the improvement of the SKF over the RKF
will also increase.

To examine the performance perceived by the filter we
compare it to the true performance of the filter at the
final time-step. Before discussing the results, we note that
the SKF perceived analysis error variance will not be a

smooth field for the ðRI , QsÞ parameter pairs considered.
This is because in section 6.1 the optimal value of Cs was
calculated to a limited precision of 0.001.

In Fig. 4 we plot the difference between the perceived
and true analysis error variance at the final time-step. We
note that the magnitude of the difference between the

perceived and true error variances is smallest for large RI

and Qs: Here, the SKF (RKF) perceived error variance is
approximately 1.25 (0.5) times the size of the true error
variance. The SKF perceived-minus-truth difference
shown in panel (a) is always positive for non-negligible
representation uncertainty. This shows the SKF is a con-
servative filtering strategy when compensating for obser-
vations exhibiting error due to unresolved scales. As both

RI and Qs are increased the SKF perceived-minus-truth
difference increases. This is due to two reasons. The first
reason is because the perceived analysis error variance,

Pll, a, increases with larger Cs as it is calculated using the
short form update (3.2) and the optimal Cs will be larger

for higher values of RI and Qs: The second reason is
because, for non-negligible representation uncertainty, the

true analysis error variance, ePll, a
, will decrease as Cs

approaches its optimal value. An illustrative case is pro-
vided by Fig. 2b for high representation uncertainty and
low instrument uncertainty. Figure 4(b) shows the RKF
perceived-minus-truth difference. This is always negative
for non-negligible representation uncertainty. This shows
the RKF is an overconfident filtering strategy for obser-
vations exhibiting error due to unresolved scales. The
RKF is most overconfident in regimes of low instrument
uncertainty and high representation uncertainty.

7. Representation error bias correction through
state augmentation

Up to this point we have not considered observation bias
in our numerical experiments. However, in operational
data assimilation, most observations or their respective
observation operators exhibit systematic errors which are
referred to as biases. A common approach for correcting
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observation biases online in a Kalman filter algorithm is
to augment the state vector with a bias term (Dee, 2005;
Fertig et al., 2009). The bias state will then be estimated
and evolved along with the state variables through the
data assimilation algorithm (Friedland, 1969).

In section 2.3 we showed that observation errors may
exhibit a representation error bias when there is a contri-
bution from the large-scale processes to the small-scale

state (i.e., when Msl 6¼ 0Ns�Nl ). Throughout the remainder
of this manuscript we only consider bias due to unre-
solved scales which is linked to the state-space representa-
tion of the small-scale processes. Since we know the exact
form and origin of the observation bias in this study we
may treat it as a model bias. Therefore, we consider the
augmented state vector x with form

x ¼ xl

xb

� �
, (7.1)

where xb 2 R
Ns is the bias state. Thus, xb is intended to

represent xs, th i (cf. (2.13)). For bias correction through
state augmentation we require a prior estimate of the bias
and a model to forecast it. Using (2.2), the forecast model
for the bias state is given by

xbk ¼ Mslxlk�1 þMsxbk�1, (7.2)

where we have assumed the model for the bias to be per-
fect. Random noise can be added to (7.2) to indicate that
the bias evolution model is not perfect (M�enard, 2010)
but is not explored here. In operational centres the model
for individual sources contributing to the bias will be
unknown and models describing the total bias will be
used instead. These models for the bias will be obtained
from assumptions imposed on the bias such as assuming
it evolves slowly or is constant in time (e.g., Lea et al.,
2008). In cases such as these, the bias estimate will likely
be poor as the variation of the bias with the evolution of
the large-scale processes will be completely
unaccounted for.

We now examine how a bias correction scheme can be
implemented in conjunction with the SKF (section 7.1)
and the RKF (section 7.2) to correct a bias due to unre-
solved scales. Table 3 summarizes the components for
these two filters which are then substituted into the filter
equations detailed in section 3.1.

7.1. The Schmidt-Kalman filter with observational
bias correction

Bias correction through state augmentation is a common
method used in operational centres but use of a bias cor-
rection scheme with the SKF, which will be denoted
SKFbc, is novel.

We assume that we have knowledge of the processes
for all scales. We further assume that we have a model
and prior estimate for the bias. The filtered state vector
for the SKFbc is given by equation (7.1) and only
includes the large-scale state and the bias term. The
small-scale state is split into a biased and unbiased com-
ponent, i.e.

xs ¼ xb þ xd, (7.3)

such that xsh i ¼ xb: The unbiased small-scale processes,
xd, will be accounted for through their statistics. The full
observation operator for the SKFbc is given by

Hl Hb Hd
� � 2 R

p�Na , (7.4)

where Hb 2 R
p�Ns and Hd 2 R

p�Ns are the linear observa-
tion operators which map the bias and unbiased small-
scale states into observation space respectively. However,
as with the SKF, the analysis update equation (3.1) uses
a forecast innovation that takes no account of the
unbiased small-scales,

do, f ¼ y� Hl Hb
� � xl, f

xb, f

� �
: (7.5)

This innovation is unbiased and hence the large-scale
analysis errors are also unbiased. The Kalman gain for

the SKFbc consists of a large-scale gain Kl 2 R
Nl�p and a

bias estimate gain Kb 2 R
Ns�p given by

Kl

Kb

 !
¼ Pll, f ðHlÞT þ Plb, f ðHbÞT þ Pld, f ðHdÞT

Pbl, f ðHlÞT þ Pbb, f ðHbÞT þ Pbd, f ðHdÞT

0@ 1AD�1,

(7.6)

where Plb 2 R
Nl�Ns is the perceived cross-covariance

between the large-scale errors and bias estimate errors,

Pld 2 R
Nl�Ns is the perceived cross-covariance between

the large-scale errors and unbiased small-scale errors,

Pbb 2 R
Ns�Ns is the perceived covariance of the bias

estimate errors and Pbd 2 R
Ns�Ns is the perceived cross-

covariance between the bias estimate errors and
unbiased small-scale errors. The perceived augmented
innovation covariance D is given in Table 3. This
increases the uncertainty the filter attributes to the
forecast innovation compared with the standard SKF.
The additional uncertainty is a result of the errors
accrued in the estimation of the bias. The term

HsCdðHsÞT in the SKFbc innovation error covariance
corresponds to the variability of the unbiased small-
scale processes.

The SKFbc equations are obtained from augmenting
the large-scale terms with bias terms and defining the
cross-covariance terms appropriately. The analysis state
update for the SKFbc is then
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xl, a

xb, a

� �
k
¼ xl, f

xb, f

� �
k
þ Kl

Kb

� �
k

yk � Hl Hb
� �

k
xl, f

xb, f

� �
k

 !
:

(7.7)

To obtain the analysis error covariance update we aug-

ment the gain (7.6) with Kd ¼ 0Ns�p and substitute into
the short-form analysis error covariance update (3.2). To
mirror the SKF analysis error covariance update equa-
tions (3.12)-(3.14), we express the SKFbc analysis error
covariance update equations as

Pll, a Plb, a

Pbl, a Pbb, a

 !
k

¼ INl � KlHl �KlHb

�KbHl INs � KbHb

 !
k

Pll, f Plb, f

Pbl, f Pbb, f

 !
k

� KlHdPdl, f KlHdPdb, f

KbHdPdl, f KbHdPdb, f

 !
k

,

(7.8)

Pld, a

Pbd, a

 !
k

¼ INl � KlHl �KlHb

�KbHl INs � KbHb

 !
k

Pld, f

Pbd, f

 !
k

� KlHdCd

KbHdCd

 !
k

,

(7.9)

Pdl, a Pdb, a
� �

k ¼ Pld, að ÞT Pbd, að ÞT
� �

k
: (7.10)

Since in the context of the SKFbc the complete model
evolving all scales is assumed to be known, it is appropri-
ate to update the bias term using this model (7.2). Thus,
the forecast state update is given by

xl, f

xb, f

 !
kþ1

¼ Ml 0Nl�Ns

Msl Ms

 !
xl, a

xb, a

 !
k

: (7.11)

For the forecast error covariance we need the model
for the unbiased small-scale processes. To determine this
model we use the definition (7.3) together with the bias
evolution equation (7.2), to give

xdk ¼ Msxdk�1 þ gsk: (7.12)

Note that the small-scale model error gs is assumed to
be unbiased. To mirror the SKF forecast error covariance
update equations (3.16)-(3.18), we express the SKFbc
forecast error covariance updates as

Pll,f Plb,f

Pbl,f Pbb,f

 !
kþ1

¼ Ml 0Nl�Ns

Msl Ms

 !
Pll,a Plb,a

Pbl,a Pbb,a

 !
k

Ml 0Nl�Ns

Msl Ms

 !T

þ Qll 0Nl�Ns

0Ns�Nl 0Ns�Ns

0@ 1A,

(7.13)

Pld,f

Pbd,f

 !
kþ1

¼ Ml 0Nl�Ns

Msl Ms

 !
Pld,a

Pbd,a

 !
k

Msð ÞT , (7.14)

Pdl,f Pdb, f
� �

kþ1 ¼
Pld, f

Pbd,f

 !T

kþ1

: (7.15)

The prescribed unbiased small-scale error covariance

Cd is assumed constant in time and is not updated.
The SKFbc allows us to correct biases due to unre-

solved scales and consider the effects of the unbiased
small-scale processes on the large-scale state. A key
advantage in this method is that the cross-correlations
between the large-scale errors and small-scale errors are
retained. However, the SKF is a computationally expen-
sive procedure. This issue is exacerbated by the use of
state augmentation for bias correction.

7.2. The reduced-state Kalman filter with observation
bias correction

To save on the computational expense incurred by the
SKFbc we can disregard the unbiased small-scale proc-
esses to obtain the reduced-state Kalman filter with bias
correction (RKFbc). As before, we augment the large
scale state vector with a bias term, so that the estimated

Fig. 5. (a): The large-scale analysis for the SKFbc (square
markers) and SKF (diamond markers) obtained through
assimilation of biased observations to recreate the true large-scale
state (grey dashed line). For this realization the large-scale
analysis mean-square-error for the SKFbc is 0.29 and for the
SKF is 1.53. (b): The SKFbc bias analysis estimate (square
markers) and the true small-scale state (grey dashed line) for the
same realization as panel (a).
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state is given by (7.1). The observation operator is also
augmented and takes the form,

H ¼ Hl Hb
� �

: (7.16)

As with the SKFbc, the forecast innovation (7.5) used
in the analysis update (3.1) takes no account of unbiased
small scale error. Therefore, a properly specified observa-
tion error covariance for the RKFbc contains both
instrument error and representation error

(i.e. R ¼ RI þ RH).
Similarly to the SKFbc, the Kalman gain for the

RKFbc consists of a large-scale gain Kl 2 R
Nl�p and a

bias estimate gain Kb 2 R
Ns�p given by

Kl

Kb

 !
¼ Pll, f ðHlÞT þ Plb, f ðHbÞT

Pbl, f ðHlÞT þ Pbb, f ðHbÞT
 !

D�1, (7.17)

where the perceived innovation covariance D 2 R
p�p is

given in Table 3. Thus, the analysis state update for the
RKFbc is obtained through substitution of the gain
matrix (7.17) and forecast innovation (7.5) into the linear
filter analysis state update equation (3.1). Likewise, the
analysis error covariance update equation is obtained
through substitution of the gain matrix (7.17) into the
short form analysis error covariance update (3.2) along
with the observation operator (7.16).

For the RKF we assumed knowledge of the large-scale
processes only. Hence, the model for the bias due to
unresolved scales would be unknown and further assump-
tions required for the observation bias correction scheme.
Nevertheless, to provide a direct comparison we will use
the same model as the SKFbc (7.11) for the forecast state
update. This model and a consistent model error covari-
ance matrix (see Table 3) are used for the augmented
analysis error covariance update (3.2).

Comparison of the OKF column in table 1 and the
RKFbc column in table 3 shows the two filters have simi-
lar components as a result of the bias correction through
state augmentation approach. The key difference between

the two filters is the model error covariance expressions.
The OKF accounts for the uncertainty in all scales and
so uses the full model error covariance. The RKFbc
accounts for the uncertainty in the large-scales and the
estimate of the bias. Since the model for the bias (7.2)
has been assumed perfect the RKFbc will only account
for large-scale model error. We note that, as no know-
ledge of the small-scale processes is assumed for the
RKFbc, the forecast model will differ in practice from
that of the OKF as the RKFbc bias forecast model
would come from additional assumptions placed on
the bias.

The RKFbc is a computationally cheaper alternative
to the SKFbc for online bias correction that takes no
account of unbiased small-scale errors, except through
the choice of observation error covariance.

7.3. True analysis error equations for bias
correcting filters

The true analysis error equation for the SKFbc and
RKFbc will differ from the case 2 true analysis error
equation (4.4) due to the innovation (7.5). The change
will only be in the large-scale part of the true analysis
error equations as the small-scale state is not analysed by
either filter. The large-scale true analysis error equation
for the bias correction filters is obtained from subtracting

Fig. 6. The values of Cd which give the minimum true large-
scale analysis error variance at the end of the assimilation
window for the SKFbc.

Fig. 7. (a): Comparison of the RKFbc to the OKF in terms of
relative error percentage given by equation (6.1). (b): Comparison
of the SKFbc with optimal Cd to the OKF at the final time-step
in terms of relative error percentage.
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Kl
kH

bxb, fk from the case 2 true analysis error equation
(4.4) which produces

el, ak ¼ INl � Kl
kH

l
k

� �
Mlel, ak�1 þ INl � Kl

kH
l
k

� �
glk

þ Kl
k �k þ clk þHs, t

k xs, tk �Hb
kx

b, f
k

� �
:

(7.18)

The true large-scale analysis error covariance for the
bias correcting filters is then given by

eP ll, a
k ¼ INl � Kl

kH
l
k

� �eP ll, f
k INl � Kl

kH
l
k

� �T
þ Kl

k
eRI
k þ Hs, t

k xs, tk �Hb
kx

b, f
k

� �
Hs, t

k xs, tk �Hb
kx

b, f
k

� �T� �
Kl

k

� �T
:

(7.19)

The difference between the true analysis error covari-
ance for the non-bias correcting filters and (7.19) is thateRH

k has been replaced with ðHs, t
k xs, tk �Hb

kx
b, f
k ÞðHs, t

k xs, tk �
Hb

kx
b, f
k ÞT which corresponds to the uncertainty due to

unresolved scales and the uncertainty in the estimate of
the bias. Similarly to (4.5), equation (7.19) is still depend-
ent on xs, t and so a different form may be more suitable.

Using the definitions of the small-scale observation
operator error (2.9), the error due to unresolved scales
(2.11), the small-scale forecast error (3.9) and the identity
(4.8) we can rewrite (7.18) as
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 !
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k
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� � !
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 !
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þ Kl
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(7.20)

which is analogous to (4.9). In order to use (7.20) to
obtain the true error statistics the correlations between

es, fk and Hs
kx

s, f
k �Hb

kx
b, f
k must be considered.

8. Experimental methodology for bias
correcting filters

8.1. Gaussian random walk model

To investigate the performance of the SKFbc and the
RKFbc we will apply them to the random walk model
detailed in section 5.1. To introduce a bias into the obser-
vations we will set the contribution from the large-scale

processes to the small-scale state Msl to be nonzero in
(5.1). As in (5.1), the true observation operator for the
large- and small-scale states is H ¼ ð 1 1 Þ and conse-

quently the observation operator for the bias state Hb ¼
1 and the unbiased small-scale state Hd ¼ 1:

To calculate the true large-scale analysis error variance
of the RKFbc and SKFbc we proceed as discussed in

section 7.3. Noting that xs, f0 and xb, f0 are forecast by the
same equation and tend to the same bias for large times

we may neglect the variance of xs, fk � xb, fk and the corre-

lations between xs, fk � xb, fk and es, fk as they will be small
at the end of the assimilation window.

8.2. Initial conditions and filter parameters

The random walk model with Msl ¼ 0:05 is used to create
a reference or truth trajectory for the large- and small-

scale states. For our experiments we set xl, t0 ¼ 10 and

xs, t0 ¼ Mslxl, t0 =ð1� exp ð�1=2ÞÞ: This choice for the small-
scale truth is the limit of xs, t for the deterministic version
of the random walk model (i.e. (5.1) with no model
noise). Using these initial conditions, the model equiva-
lent of the observations will be biased at each time-step.
The initial prior large- and small-scale estimates are set as

xl, f0
xs, f0

0@ 1A ¼ xl, t0 þ al

xs, t0 þ as

 !
, (8.1)

where al � Nð0, Pll, f
0 Þ and as � Nð0, Pss, f

0 Þ where we

take Pll, f
0 ¼ 1 and Pss, f

0 ¼ 0:1: Similarly, we set the initial

prior bias estimate as xb, f0 ¼ xs, t0 þ ab where ab �
Nð0, Pss, f

0 Þ: We take the initial cross-covariances between
the forecast errors for the large-scale and bias state errors
to be zero. The modelled unbiased small-scale error vari-

ance Cd for the SKFbc will be varied for our experi-
ments. We also take the unbiased small-scale errors to be
initially uncorrelated with large-scale and bias estimate
forecast errors. We set the large-scale model error vari-

ance as Ql ¼ 1 throughout our experiments while Qs will
be varied. Unless otherwise specified, the instrument error

variance will be set to RI ¼ 0:1: For the RKFbc, we set

RH ¼ 0 so that the filter completely ignores the unbiased
small-scale processes.

9. Numerical experiments with bias
correcting filters

9.1. Comparison between bias correcting filters and
non-bias correcting filters

We now consider the case of assimilating biased observa-
tions with standard and bias correcting filters. Figure 5
shows the analyses created by the SKF and SKFbc when
assimilating biased observations for a single realization of
the background, observation and model errors where
Qs ¼ 0:3: As optimal modelled small-scale error variances
have not been calculated for the random walk model

with Msl 6¼ 0, we set Cd ¼ Cs ¼ 0:1: These are
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suboptimal choices for both filters which results in a
small difference in the true analysis error variances
between the SKFbc (SKF) and RKFbc (RKF). Panel (a)
shows an almost constant offset between the solutions of
the bias-correcting and non-bias correcting schemes.
Furthermore, calculating the time average of the squared
analysis errors we find the SKF error is over four times
larger than the SKFbc error.

For this realization, the time average of the squared
analysis errors for the RKFbc and the SKFbc are the
same to two decimal places. However, the SKFbc does
have a smaller true large-scale analysis error variance

than the RKFbc and the difference increases more as Cd

is more optimally chosen. The same is true for the RKF
and SKF with modelled variance Cs:

In Fig. 5b we see the bias value estimated by the
SKFbc and the small-scale true model solution for a par-
ticular realization, which is dominated by noise. The bias

state xb, ak is intended to estimate the expected value of
the small-scale state evolved with the filter forecast model
such that it is unaffected by small-scale noise (see (7.3)).

Using (2.2) we see that xs, tk

 � ¼ Mslxl, tk�1 þMsxs, tk�1 þ gsk

D E
where the angular brackets indicate the mathematical
expectation over the distribution of the small-scale model

errors. Here, we have plotted xs, tk which is dependent on
the large-scale noise and small-scale noise (cf. (2.2)).
From this panel we see that the bias estimate is consistent
with the small-scale true model solution.

Additional experiments using persistence as the fore-
cast model for the bias state with the SKFbc have been
carried out. We find that the time average of the SKFbc
squared analysis errors is approximately three times
smaller than the time average of the SKF squared ana-
lysis errors without bias correction. Nevertheless, the
mean-square analysis errors for the SKFbc with the per-
sistence bias model are more than 50% larger than when
using (7.2). Additionally, when using persistence as the
forecast model for the bias state in the RKFbc we find
the time average of the squared analysis errors is also
approximately three times less than the SKF error.
Hence, for this system it is more important to treat the
bias due to unresolved scales than compensate for the
unbiased error due to unresolved scales.

9.2. Determining the optimal Cd over the
assimilation window

In this section we determine the optimal Cd over the
whole assimilation window.

For the SKF, we found that the choice of Cs was key
to the performance of the filter. We follow a similar

procedure to section 6.1 to find the optimal values of the

unbiased small-scale error covariance Cd: Our experi-
ments have an assimilation window of 15 time-steps with
an observation assimilated at each time-step. To find the

optimal Cd for given parameter values for RI and Qs, we
calculate the true large-scale analysis error variance of

the SKFbc for Cd ranging from 0 to 1 in steps of DCd ¼
0:001 and save the value that produces the smallest vari-
ance at the final time-step.

Figure 6 shows the optimal Cd for different values of

Qs and RI : The behaviour is qualitatively similar to Cs

with the SKF shown in Fig. 1 but numerical comparison
is not meaningful as a different model is used. In particu-

lar, the size of Cd is primarily determined by the magni-

tude of Qs: However, we find that an increase in RI can

also result in a larger Cd being optimal. If Msl is

increased, the optimal Cd decreases as the uncertainty
caused by the contribution from the large-scale processes
to the small-scale state becomes more important.

9.3. Comparison of the bias correction filters

In this section we evaluate the performance of the SKFbc
and RKFbc relative to the OKF and examine their per-
ceived error variances.

We now compare the SKFbc and RKFbc with the
OKF in terms of relative error percentage (6.1), plotted
in Fig. 7. The SKFbc provides most improvement over

the RKFbc for large Qs and small RI : This behaviour is
qualitatively similar to the comparison between the RKF
and SKF with the OKF shown in Fig. 3. We have also
examined the perceived and true analysis error variances
for the RKFbc and SKFbc (not plotted). The results are
qualitatively similar to those given in section 6.2 for the
RKF and SKF. Indeed, for non-negligible representation
uncertainty the SKFbc (RKFbc) is a conservative (over-
confident) filtering strategy as the perceived-minus-truth
difference is positive (negative).

10. Summary and conclusion

Observations of the atmospheric state may contain
information on spatio-temporal scales unable to be
represented by a numerical model. The resulting error
caused by this scale mismatch between the observations
and numerical model is known as the error due to
unresolved scales. To obtain accurate analyses from
assimilation of these observations requires that the
data assimilation algorithm correctly account for
this error.
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In this work we have considered the ability of linear
filters to compensate for the error due to unresolved
scales. We considered a finite dimensional true state
which could be partitioned into a large-scale state
resolved by a numerical model and a small-scale state
unresolved by a numerical model. The representation
error was defined in this framework and a bias due to
unresolved scales was shown to occur when there is a
contribution from the large-scale processes to the
small-scale state.

For our experiments we considered three filters: the
Schmidt-Kalman filter (Janji�c and Cohn, 2006) that
analyses the large-scales but models the uncertainty on
all scales; the optimal Kalman filter, which analyses all
scales, and a reduced-state Kalman filter, which com-
pletely disregards the small-scale processes.

The three filters were tested numerically on a ran-
dom walk model with one variable for the large-scale
processes and one variable for the small-scale proc-
esses. The observations were taken to be the sum of the
large- and small-scale states with added noise to simu-
late instrument error. To obtain the best performance
from the Schmidt-Kalman filter we had to tune the
modelled small-scale error covariance to compensate
for the variability of the small-scale processes which
grew over the first half of the assimilation window.
The Schmidt-Kalman filter works best in regimes of
high error due to unresolved scales and low instrument
error provided a suitable approximate small-scale error
covariance is used. Examination of the perceived error
variances revealed the analysis uncertainty calculated
by the Schmidt-Kalman filter is greater than the true
analysis uncertainty when accounting for error due to
unresolved scales.

The novel use of the Schmidt-Kalman filter with an
observation bias correction scheme was introduced as a
means to correct the bias due to unresolved scales. The
Schmidt-Kalman filter with a bias correction scheme
proved to be a suitable method to treat observation
biases and compensate for due to unresolved scales. In
our experiments we found it was more important to treat
an observation bias than to compensate for an unbiased
error due to unresolved scales.

An important note to make regarding these experi-
ments was that we had complete knowledge of the small-
scale processes. This allowed for minimal approximations
to be made to implement the Schmidt-Kalman filter and
to tune the modelled error variances. In an operational
setting, where all the small-scale processes are likely to be
unknown, further approximations would be required.
Additionally, the Schmidt-Kalman filter is a computa-
tionally expensive method due to the augmentation and
propagation of the state error covariances. This must also

be addressed before the filter could be considered for
large problems.
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