Hagger, R. (2015) The eigenvalues of tridiagonal sign matrices are dense in the spectra of periodic tridiagonal sign operators. Journal of Functional Analysis, 269 (5). pp. 1563-1570. ISSN 0022-1236 doi: 10.1016/j.jfa.2015.01.019
Abstract/Summary
Chandler-Wilde, Chonchaiya and Lindner conjectured that the set of eigenvalues of finite tridiagonal sign matrices ($\pm 1$ on the first sub- and superdiagonal, $0$ everywhere else) is dense in the set of spectra of periodic tridiagonal sign operators on $\ell^2(\mathbb{Z})$. We give a simple proof of this conjecture. As a consequence we get that the set of eigenvalues of tridiagonal sign matrices is dense in the unit disk. In fact, a recent paper further improves this result, showing that this set of eigenvalues is dense in an even larger set.
Altmetric Badge
| Item Type | Article |
| URI | https://reading-clone.eprints-hosting.org/id/eprint/84019 |
| Identification Number/DOI | 10.1016/j.jfa.2015.01.019 |
| Refereed | Yes |
| Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics |
| Publisher | Elsevier |
| Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download