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Abstract
It is estimated that global anthropogenic carbon dioxide (CO2) emissions reduced by up to 12% at
the start of 2020 compared to recent years due to the COVID-19 related downturn in economic
activity. Despite the large decrease in CO2 emissions, no reduction in the trend in background
atmospheric CO2 concentrations has been detected. So, how long would it take for sustained
COVID-19 CO2 emission reductions to be detected in daily and monthly averaged local CO2

concentration measurements? CO2 concentration measurements for five measurement sites in the
UK and Ireland are combined with meteorological numerical weather prediction data to build
statistical models that can predict future CO2 concentrations. It is found that 75% of the observed
daily variability can be explained by these simple models. Emission reduction scenario experiments
using these simple models illustrate that large daily and seasonal variability in local CO2

concentrations precludes the rapid emergence of a detectable signal. COVID-19 magnitude
emissions reductions would only be detectable in the daily CO2 concentrations after at least 38
months and in monthly CO2 concentrations after 11 months of sustained reductions. For monthly
CO2 concentrations the time of emergence is similar for all sites since the seasonal variability is
largely driven by non-local fluxes of CO2 between the terrestrial biosphere and the atmosphere.
The COVID-19 CO2 anthropogenic emissions reductions are similar in magnitude to those that
are required to meet the Paris Agreement target of keeping global temperatures below 2◦C. This
study demonstrates that, using measurements alone, there will be a considerable lag between
changes in global anthropogenic emissions and a detected signal in local CO2 concentration trends.
Thus, there is likely to be a delay of several years between changes in policy designed to meet CO2

anthropogenic emissions targets and our ability to detect the impact of these policies on CO2

concentrations using atmospheric measurements alone.

1. Introduction

Electricity production, transportation and industrial
activity account for more than 80% of carbon diox-
ide (CO2) emissions from fuel combustion (Quadrelli
and Peterson 2007). Since the start of 2020, COVID-
19 restrictions have significantly reduced these activ-
ities. Current estimates suggest that global fossil fuel
CO2 emissions in 2020 may have dropped by around
7%–8% (Friedlingstein et al 2020, Hale and Leduc

2020, Le Quéré et al 2020, Liu et al 2020). Andreoni
(2021) estimates that in Europe more than 195 600
thousand tons of CO2 have been avoided between
January and June 2020, compared to the same period
of the previous year, representing a −12.1% emis-
sions change. A decline in annual CO2 emissions
of this size would exceed any decline since the end
of World War II. The magnitude of these emissions
reductions is similar to those required to meet the
target of the Paris Agreement, which aims to keep
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the global temperature rise below 2◦C (hereafter
‘Paris Agreement magnitude emissions reductions’).
To meet the Paris Agreement temperature target,
emissions from energy production and transport will
have to peak almost immediately in the developed
world (Annex I countries) and decline at about
10% each year until net-zero emissions are reached
around 2030 (IPCC 2018). Thus the COVID-19 crisis
presents a test bed for understanding these longer-
term climate change policies on a more immediate
time-scale.

While the recent reductions in CO2 emissions are
indeed substantial, they do not immediately equate
to similar reductions in the trend of atmospheric
CO2 concentrations. Background CO2 concentration
measurements have not, so far, shown any changes
as a result of COVID-19 emissions reductions (Liu
et al 2020). This is consistent with previous situ-
ations when reductions in CO2 associated with eco-
nomic downturns did not significantly change the
trend in CO2 concentrations (Granados et al 2012).
The lack of sensitivity to emissions reductions is due
to the long atmospheric lifetime of CO2 (50–200
years) whichmakes any perturbation in emission rate
small compared to the reservoir of CO2 currently
present in the atmosphere. In addition, the large daily
and seasonal variability of CO2 concentrations makes
changes in global CO2 emissions difficult to detect
(Samset et al 2020). Thus if we cannot expect imme-
diately measurable impacts, how long would we need
to wait to detect a change in the CO2 concentration
trend due to COVID-19 emission reductions?

In the climate change literature, many studies
have investigated the response of the climate system to
changes in greenhouse gases (Taylor and Penner 1994,
Stainforth et al 2005, Sitch et al 2015). These studies
typically involve running experiments with coupled
atmosphere-ocean climate models with greenhouse
gas forcing running over 50–100 year time periods.
They may also be coupled to models of other pro-
cesses in the Earth’s atmosphere such as the car-
bon cycle, so as to better simulate climate feed-
backs such as interaction with the terrestrial eco-
systems or oceans. On decadal to centennial times-
cales changes in CO2 emissions can alter the climate.
Therefore, these long integrations are necessary so
that the response of the climate to the changing green-
house gas emissions can reach equilibrium (Tebaldi
and Friedlingstein 2013). However, on shorter times-
cales (days to months) CO2 behaves more like a
passive tracer. The concentrations of CO2 on these
timescales is largely controlled by changes in the
weather and terrestrial biospheric activity. There-
fore complex climate models which represent inter-
actions occurring over longer timescales (years to
decades) are not needed to capture the near-term
consequence of changes in CO2 emissions on CO2

concentrations.

The aim of this work is to determine how long
it would take for COVID-19/Paris Agreement mag-
nitude emissions reductions to be detected in local
daily andmonthlyCO2 concentrationmeasurements.
We have built multiple linear regression (MLR) mod-
els, similar to those used to predict short-lived air
quality pollutants (e.g. Carslaw and Beevers 2005,
Dacre et al 2020), to predict CO2 concentrations
using only meteorological data and recent local CO2

measurements. These models will not capture the
responses in the complex models because they are
tuned using recent data and they do not include cli-
mate feedbacks. However, these reduced complexity
models may nevertheless be used to gain insights into
our ability to detect greenhouse gas emissions reduc-
tions. In addition, they aremuch less computationally
expensive, making them very fast to run.

2. Data

2.1. CO2 data
The hourly atmospheric CO2 measurements used in
this study were taken from five in-situ observator-
ies situated across the UK and Ireland (figure 1).
Four of these stations, Tacolneston, Ridge Hill, Bils-
dale and Heathfield, form the UK-based part of the
UK Deriving Emissions linked to Climate Change
(DECC 2020) network (Stanley et al 2018, Stavert
et al 2019). Each of these sites makes use of a tall
telecommunications tower to sample air from mul-
tiple height inlets (ranging from 42 to 248 m above
ground level (magl) across the network). At each
UK DECC site, we use data from the highest inlet
only (table 1). The fifth site, Mace Head, is situated
on the west coast of Ireland. This station is ideally
positioned to intercept northern hemispheric back-
ground air from the North Atlantic. CO2 measure-
ments from Mace Head are made by Laboratoire des
Sciences du Climat et de l’Environnement as part
of the integrated carbon observation system (ICOS)
network, from a 23 magl sample inlet (Vardag et al
2014). Note that lower-frequency CO2 measurements
are available from Mace Head data prior to 2011.

Figure 1 shows the average footprint emissions
sensitivity obtained from 30 day backwards simula-
tions of the Met Office’s numerical atmospheric dis-
persion modelling environment (NAME) model for
the five sites forMarch 2020. The sensitivity is defined
as the contribution per unit emission to the mole
fraction measurement (Manning et al 2011). These
footprints provide an indication of the location of
the local emissions contributing to themeasurements
at each site in March 2020. At all five sites, con-
tinuous in-situ CO2 measurements are made using
cavity ring-down spectrometers (Picarro G2301 or
G2401). At UK DECC sites, ambient measurements
are corrected for linear instrumental drift via daily
measurements of a standard gas. A small non-linear
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Figure 1. Location of measurement sites used in this study. Mace Head (MHD), Bilsdale (BSD), Ridge Hill (RGH), Heathfield
(HFD) and Tacolneston (TAC). Overlaid is the average footprint emissions sensitivity in picoseconds per mole (psmol−1),
obtained from 30 day backwards simulations of the Met Office’s NAME model for the five sites for March 2020.

Table 1. Location, inlet height (metres above ground level, magl)
and data availability for the 5 CO2 measurement sites used in this
study.

Site Lat/Lon
Inlet height
(magl)

Data
availability

Mace Head 53.327◦ N,
9.904◦ W

23 2011–present

Tacolneston 52.518◦ N,
1.139◦ E

185 2012–present

Ridge Hill 51.998◦ N,
2.540◦ W

90 2012–present

Bilsdale 54.359◦ N,
1.150◦ W

248 2014–present

Heathfield 50.977◦ N,
0.231◦ E

100 2013–present

correction is applied based on monthly analyses of
four calibration gases that span above and below the
ambient mole fraction range (Stanley et al 2018).
The calibration strategy differs slightly at Mace Head,
where ambient measurements are assigned a mole
fraction based on comparison to a linear fit of four
calibration cylinders. Like the UK sites, these calib-
ration gases span the complete ambient range. All

calibration cylinders are of natural composition and
were assigned CO2 mole fractions at the World Cal-
ibration Centre at Empa or the GasLab, Max Planck
Institute for Biogeochemistry, Jena, linking them to
the World Meteorological Organization X2007 CO2

calibration scale.

2.2. Meteorological data
The meteorological data to build the statistical mod-
els in this study comes from the UK Met Office
UKV model (Tang et al 2013). Hourly data cover-
ing the period 1 January 2015–31 May 2020 is used.
Hourly 4D-Var assimilation allows the production
of state-of-the-art weather forecasts for the UK, ini-
tialised every hour (Ballard et al 2016). The UKV
has a high resolution inner domain (1.5 km grid
spacing) over the UK, separated from a lower res-
olution grid (4 km grid spacing) near the bound-
aries by a variable resolution transition zone. The
high resolution contains a better representation of
land surface processes and orography than coarser
resolution global models. Sub-grid scale processes
such as, boundary layer turbulence, radiation, cloud,

3
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Table 2. Regression coefficients (βi) from the MLR models for each measurement site. The coefficients quantify how much the daily
CO2 concentration is expected to increase/decrease when each explanatory variable (xi) increases by one, holding all the other variables
constant. Explanatory variables are monthly averaged temperature (averaged over the preceding month), daily averaged easterly wind
speed (u-wind), daily averaged northerly wind speed (v-wind) and daily averaged boundary layer depth (BLD). Coefficients are only
included where they are significant at the 95% level.

Explanatory
variable (xi) Ridge Hill Tacolneston Bilsdale Mace Head Heathfield Average

Date β1 0.007 0.007 0.007 0.007 0.007 0.007
Temperature (K) β2 −1.1 −1.0 −1.2 −1.5 −1.2 −1.2
U-wind (ms−1) β3 3.4 1.2 2.4 2.3 1.8 2.2
V-wind (ms−1) β4 — −1.1 −0.8 0.7 1.4 0.2
BLD (m) β5 −0.004 −0.007 — −0.002 −0.008 −0.005

microphysics and orographic drag are represented by
parameterizations. The UKV model has been shown
to compare well against observations (Lean et al 2008,
Roberts and Lean 2008, Clark et al 2016). Meteoro-
logical data for the 5-year period (1 January 2015–
31 December 2019) is extracted from the UKV and
interpolated to the location of the DECC sites to
build the statistical models described in section 3.
One advantage of using weather model output is
that above surface variables, such as boundary layer
height, can be extracted, although modelled bound-
ary layer height has not been evaluated at many sites
in the UK due to lack of climatological measure-
ments (Harvey et al 2013, 2015). One disadvantage
of using weather model output is that the resolu-
tion of the model data is 1.5 km2, whereas the CO2

concentration data are point measurements. If they
were available, use of local meteorological measure-
ments to build the statistical models would be more
accurate.

3. MLRmodelling

In order to predict daily and monthly average
CO2 concentrations during the ongoing COVID-19
restrictions,MLRmodels are built using up to 5-years
of DECC and UKV data (2015–2019). MLR model-
ling is used since the concentration of CO2 is likely
to depend on more than one predictor variable. The
technique enables the relative influences of the pre-
dictor variables to be analysed, which allows us to
perform the simple CO2 emission scenario experi-
ments described in section 5. MLRmodelling is com-
monly used for predicting the variability in short-
lived pollutant concentrations such as NO2 (Shi and
Harrison 1997, Carslaw and Beevers 2005, Dacre et al
2020). TheMLRmodels predict the daily averageCO2

concentrations we would expect, during the COVID-
19 period, given no change in CO2 emissions. Sev-
eral meteorological and temporal explanatory vari-
ables (xi) are used to predict CO2 concentrations (y)
at eachDECC station. The regression coefficients (βi)
describe the size of the effect of the explanatory vari-
able on the daily CO2 concentrations and α is the
value y is predicted to have when all the explanatory
variables are equal to zero.

y=
n∑

i=1

βixi +α. (1)

The Akaike information criterion (AIC) is used to
determine which explanatory variables to include in
the models. The model with the lowest AIC score is
expected to have the best balance between its ability
to fit the data set and its ability to avoid over-fitting
the data set. The explanatory variables and regression
coefficients used in this study are shown in table 2.
Since wind direction is cyclic not linear (i.e. 0 and 360
degrees have the same direction) it is partitioned into
its northerly (v-wind) and easterly (u-wind) com-
ponents. Wind speed, wind direction and temperat-
ure are all extracted 10 m above ground level. Sensit-
ivity studies using meteorological variables extracted
at the height of the sample inlets for each site did not
improve the MLR models.

Our aim in the design of the MLR models was to
keep the number of explanatory variables to a min-
imum and to restrict the models to use local data
only. This is desirable to ensure that others, with only
local CO2 concentration and meteorological meas-
urements available to them, can build similar models
for their site locations. Also, for simplicity, the same
explanatory variables are used for each of five sites
analysed. The importance of each variable in explain-
ing the observed CO2 concentrations varies for each
site, but the variables in table 2 were found to contrib-
ute to a reduced AIC for all five sites.

4. Evaluation of predicted CO2
concentrations

In this section the CO2 concentrations predicted by
the MLR models are compared to the observed CO2

concentrations at all five DECC sites. The evaluation
is performed for various temporal averaging periods.
The aim is to determine whether theMLRmodels are
a credible representation of reality and thus can be
used to perform emission scenario experiments.

4.1. Annual and seasonal CO2 concentration
variability
Figure 2 shows the yearly averaged observed and
predicted CO2 concentrations between January 2015

4
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Figure 2. CO2 concentrations from 1 January 2015 to 30 May 2020 at (a) Ridge Hill, (b) Tacolneston, (c) Bilsdale, (d) Heathfield
and (e) Mace Head. Daily averaged observed concentrations (blue) and predicted concentrations (red). 30-day averaged observed
concentrations (cyan) and predicted concentrations (orange). Annually averaged observed concentrations (black) and predicted
concentrations (grey). Note that there is 2 weeks of missing meteorological data in 2017.

and June 2020. At all sites there is a monotonic
increase in yearly averaged CO2 concentrations. CO2

concentrations are primarily rising because of the
increased amounts of fossil fuels that humans are

burning for energy. The predicted CO2 concentra-
tions capture this annual increase in CO2 concen-
trations due to the inclusion of the date in the
MLR models with a coefficient of 0.007 ppmday−1

5
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at all sites which is equivalent to 2.5 ppmyear−1

(table 2).
Figure 2 also shows the monthly averaged

observed and predicted CO2 concentrations between
January 2015 and June 2020. At all sites there is a
strong annual cycle in CO2 concentrations, with
highest CO2 concentrations measured during the
winter months and lowest CO2 concentrations meas-
ured during the summer months. This annual cycle
is the result of photosynthetic activity by plants. As
plants begin to photosynthesize in the spring and
summer, they absorb CO2 from the atmosphere
and eventually use it as a carbon source for growth
and reproduction. Once winter arrives, plants save
energy by decreasing photosynthesis. Without pho-
tosynthesis, the dominant process is the exhalation
of CO2 by the total ecosystem, including bacteria,
plants, and animals. The modelled CO2 concen-
trations capture the annual cycle in CO2 concen-
trations fairly well due to the inclusion of monthly
averaged temperature in the MLR models. The coef-
ficients used in the MLR models for monthly aver-
aged temperature are all negative indicating that CO2

decreases as the temperature increases, and vice-
versa, with an average coefficient of −1.2 ppmK−1

(table 2).

4.2. Daily CO2 concentration variability
In this section we focus on the daily variability in
CO2 concentrations, typically caused by the move-
ment of synoptic-scale high and low pressure sys-
tems. To illustrate this we compare the daily averaged
observed and predicted CO2 concentrations between
January 2020 and June 2020 (figure 3). Note that no
data from 2020 was used to build the MLR models.
The daily variability is largely driven by transport and
mixing of CO2 in the atmospheric boundary layer.
High CO2 concentrations occur when the bound-
ary layer is shallow. During these conditions mixing
is suppressed and emissions do not disperse rapidly
away from sources but are trapped within the bound-
ary layer where they can accumulate. The MLR mod-
els quantify this negative relationship with an aver-
age coefficient of −0.005 ppmm−1. Since the daily
averaged BLD can vary by several hundred metres
this can result in CO2 variability of 1–2 ppmday−1.
In addition, for certain wind directions, transport
from regional CO2 sources towards the measurement
site occurs resulting in high CO2 concentrations. The
coefficients used in theMLRmodels for easterly wind
speeds are all positive. This suggests that easterly
winds, which advect air from mainland Europe, con-
tain higher CO2 concentrations than westerly winds
which transport relatively low CO2 concentration air
from the North Atlantic. The coefficients for north-
erly wind speeds are more mixed. The Tacolneston
and Bilsdale MLR models contain negative coeffi-
cients indicating that southerly winds increase CO2

concentrations. This is consistent with their locations

which have a long fetch of sea to their north. Con-
versely, the Heathfield and Mace Head MLR mod-
els contain positive coefficients indicating that north-
erly winds increase CO2 at these sites. Heathfield
is located south of several large urban areas so is
potentially influenced by CO2 emitted locally. Finally,
Ridge Hill has no significant correlation with north-
erly wind direction since there are sources of CO2 to
both the north and south. Thus the modelled CO2

concentrations capture the daily variability in CO2

concentrations due to the inclusion of wind speed,
wind direction and boundary layer depth in the MLR
models.

4.3. MLRmodel evaluation
Over the training period (January 2015–December
2019), the MLR models capture 75% of the observed
variability in daily averaged CO2 concentrations with
a root mean square error (RMSE) of 3.71 ppm
(table 3). The RMSE in daily average CO2 concen-
trations is relatively large due to an underestimation
of the spikes in the observed daily CO2 concentra-
tions which are likely to be due to local emissions
of CO2 occurring within a few km’s surrounding the
tall towers. The normalised mean bias (NMB) is close
to zero for all sites. The highest correlations (R2)
and lowest RMSE are found at Mace Head and Bils-
dale. These sites have relatively small daily variabil-
ity compared to the other sites suggesting that they
are influenced less by local sources of pollution. Over
the 2015–2019 training period the models explain
more of the variability in the Spring/Summer (R2 =
0.77) than in the Autumn/Winter periods (R2 =
0.68) and the RMSE is lower (3.36 and 4.01 ppm
respectively) (table 3). This is due to spikes in the
observed daily CO2 concentrations which occur pre-
dominantly during the winter and can reach 440 ppm
(figure 2).

During 2020 the correlations are lower than dur-
ing the training period but the MLR models still
explain on average 67% of the observed variability
in daily CO2 (table 3). After the 16 March 2020 (UK
lockdown) the RMSE increases at four out of the five
sites (figure 3). However, none of the MLR models
systematically overestimate the observed CO2 con-
centrations after the UK lockdown demonstrating
that it will take longer than 2 months for any signal of
reduced CO2 emissions to be observed in the atmo-
spheric CO2 concentrations.

5. Global CO2 emission scenarios

Since the MLR models describe so much of the
observed daily CO2 variability they provide a real-
istic substitute for the real world and thus can
be used to perform emission scenario simulations.
In particular, the MLR models are used in this
section to determine how long it would take for

6
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Figure 3. CO2 concentrations from 1 January to 30 May 2020 at (a) Ridge Hill, (b) Tacolneston, (c) Bilsdale, (d) Ridge Hill and
(e) Mace Head. Daily average observed CO2 concentrations (blue) and modelled CO2 concentrations (red). Dashed line indicates
date of UK lockdown on 16 March 2020.

COVID-19/Paris Agreement magnitude CO2 emis-
sions reductions to be detected in daily and monthly
averaged CO2 measurements. Since CO2 has a life-
timemuch longer than 5 years, simple global emission

scenario simulations can be performed by scaling the
regression coefficient controlling the trend (i.e. the
date) whilst maintaining the seasonal and daily vari-
ability. β1 = 0.007 ppmday−1 represents 100% of the

7
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Table 3. Correlation (R2), RMSE and normalised mean bias (NMB) statistics for daily model prediction of CO2 concentration at each
measurement site. Statistics are calculated for the model training period (January 2015–December 2019), Autumn/Winter months
(September–February) in the training period, Spring/Summer months (March–August) in the training period and for the prediction
period (January–December 2020).

Ridge Hill Tacolneston Bilsdale Mace Head Heathfield Average

2015–2019
R2 0.75 0.71 0.79 0.78 0.73 0.75
RMSE (ppm) 3.77 3.95 3.32 3.21 4.28 3.71
NMB (%) −0.02 0.01 0.01 −0.01 −0.003 0.00
Autumn/Winter
R2 0.71 0.57 0.71 0.76 0.63 0.68
RMSE (ppm) 3.94 4.53 3.55 3.10 4.94 4.01
NMB (%) 0.04 −0.05 0.00 0.10 −0.03 0.01
Spring/Summer
R2 0.76 0.74 0.79 0.79 0.75 0.77
RMSE (ppm) 3.43 3.36 3.11 3.23 3.68 3.36
NMB (%) −0.07 0.08 −0.02 −0.09 0.04 −0.01
2020
R2 0.62 0.65 0.75 0.68 0.65 0.67
RMSE (ppm) 3.52 3.81 2.96 2.97 4.03 3.46
NMB (%) −0.03 −0.15 0.05 −0.01 0.03 −0.02

annual CO2 concentration increase due to increasing
anthropogenic emissions and β1 = 0.0 ppmday−1

represents net-zero anthropogenic emissions. Thus
sensitivity to different global emission scenarios can
be performed while keeping the seasonal and daily
variability constant (i.e. the regression coefficients
for wind speed and wind direction, boundary layer
depth and monthly averaged temperature remain
unchanged).

The variability in daily CO2 concentrations (daily
noise) is estimated by the standard deviation of
observed CO2 concentrations over 30-day moving
windows (figure 4). The variability in monthly CO2

concentrations (monthly noise) is estimated by the
standard deviation of the 2015–2019 de-trended
observed CO2 concentrations over moving 3 month
periods. The difference in simulated CO2 concentra-
tion between the 100% emissions and reduced global
emissions scenarios (signal) increases with time and is
proportional to the magnitude of the global emission
reduction. The signal-to-noise ratio thus determines
how reductions in CO2 concentrations resulting from
the emissions reduction scenarios compare to the
estimated variability in CO2 concentrations. The time
of emergence is defined as the earliest time that the
signal-to-noise ratio exceeds a value of 1. Since the
time of emergence may depend on the initial con-
ditions it is calculated for simulations initialised at
varying weekly intervals between January 2015 and
January 2020 to give a range of emergence times for
each emission scenario. Figure 4(a) shows the evolu-
tion of daily CO2 concentrations and daily noise for
Ridge Hill assuming 100% emissions (plotted every
7 days). Different emission scenarios are also shown.
For the Ridge Hill simulation initialised on 15 Janu-
ary 2015 (figure 4(a)) the time of emergence for the

net-zero scenario simulation (−100%) occurs 10.3
months after the start of the simulation. The time
of emergence for the −50%, −25% and −12% emis-
sions scenarios occur 15.3, 27.3 and 50.6months after
the start of the simulation respectively. Figure 4(b)
shows simulations initialised at the same time for the
Mace Head site. The time of emergence for the net-
zero scenario is similar to that at Ridge Hill, for this
initialisation time, but the time of emergence for the
−50%, −25% and −12% emissions scenarios occurs
earlier than the respective emission scenarios at Ridge
Hill.

Table 4 shows the range of time of emergence
for multiple emission scenarios initialised at monthly
intervals. If net-zero anthropogenic emissions are
assumed (−100%) then a signal would be detect-
able in the daily CO2 concentrations after an aver-
age of 8 months. The signal in daily CO2 concen-
trations would likely emerge at Bilsdale and Mace
Head 2–3 months earlier than the other DECC sites
as the daily variability at these sites is smaller than at
the other DECC measurement locations. The longest
daily time of emergence for the net-zero emission
scenario would likely be at the Heathfield site, which
is a semi-rural UK site located 19 km south of Royal
Tunbridge Wells (population 118 000), in East Sus-
sex, UK. As the emission scenario reduces in mag-
nitude, the daily time of emergence increases. If a 50%
reduction in anthropogenic emissions is maintained
indefinitely a reduction in the trend of daily CO2

concentrations would be observable after an average
of 15 months. For COVID-19/Paris Agreement like
magnitude emissions reductions of−12% (Andreoni
2021) the daily time of emergence would be on aver-
age after 38months. Thuswewould be able to detect a
reduction in daily CO2 concentrations after 2–3 years
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Figure 4. Example 24-hour averaged predicted CO2 concentrations for the (a) Ridge Hill and (b) Mace Head site with 100%
emissions (black),−12% emissions (orange),−25% emissions (red),−50% emissions (purple) and−100% emissions (blue).
Grey shading shows 100% emissions simulations±1 standard deviation of the 24-hour averaged observed CO2 concentrations
for a centred 30-day window. Simulations initialised on 15 January 2015. Vertical lines show the time at which signal-to-noise
ratio exceeds 1 (time of emergence) for the different emission scenarios.

Table 4. Time of emergence (ToE, months) of CO2 concentration differences due to reduced emission scenarios. The ranges are the
25–75th percentile ToE estimated using different start dates and for two averaging periods (24 hours and 30 days).

Ridge Hill Tacolneston Bilsdale Mace Head Heathfield Average

Daily ToE
−12% emissions 42–48 20–31 32–48 29–37 47–61 38
−25% emissions 24–30 17–28 18–26 17–20 37–41 24
−50% emissions 14–19 12–18 11–15 8–14 19–24 15
−100% emissions 8–12 7–10 6–9 6–8 10–13 8
Monthly ToE
−12% emissions 8–13 9–15 6–14 8–13 7–15 11
−25% emissions 5–10 6–12 5–10 5–9 5–11 8
−50% emissions 4–8 5–9 4–8 4–8 4–8 6
−100% emissions 3–6 3–6 3–6 3–7 3–6 5

depending on the measurement site. Note that for the
smallest emission reduction scenario (−12% emis-
sions) there are large daily time of emergence inter-
quartile ranges due to a decrease in the sample size.

If we average the daily data to calculate monthly
CO2 concentrations then we smooth out the daily
variability. Thus we can detect a reduction in the
monthly CO2 concentration trend due to COVID-
19 like magnitude emissions reductions earlier,
after about 11 months. Therefore, if current global
lockdown restrictions continue we might detect a
reduction in monthly averaged CO2 concentration
trend some time in 2021 at the earliest. When aver-
aging over a month, the differences in the time of
emergence between the measurement sites reduces as
the CO2 concentrations are less dependent on local
emissions and are largely driven by non-local biogenic
emissions.

6. Conclusions

In this paper, analysis of 5 CO2 monitoring sites
in the UK and Ireland has shown that after sev-
eral months of CO2 emissions reductions there
are no detectable decreases in CO2 concentrations
exceeding the natural variations in measured CO2

concentrations. Furthermore, global emission reduc-
tion scenario experiments show that it would take
around 3 years of sustained global emissions reduc-
tions before any such signal could be detected in the
local daily CO2 concentration trend and 1 year before
a reduction in CO2 concentration trend would be
detectable in the monthly averaged local CO2 con-
centration trend. Futurework could include perform-
ing the linear regression modelling using the fossil
fuel contribution of CO2 calculated from the meas-
ured 14C content of CO2, instead of using total CO2
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concentrations. Since the method used to create the
MLR models is generalizable, similar MLR models
could be built for other locations with only local CO2

andmeteorological measurements available. It would
be interesting to perform a similar study at a remote
location, such as the Mauna Loa observatory, which
is not affected by local CO2 emissions in order to
determine if the time of emergence appears earlier or
later than those estimated for the sites in the UK and
Ireland. The models used to make these estimates do
not include climate feedbacks or processes determ-
ining plant growth which may make any detection
of any signal even more difficult, hence these results
should be seen as a lower limit. The results of this
study show that the growth rate of CO2 in the atmo-
sphere will not decrease unless there is a substan-
tial and persistent reduction in emissions over many
decades.

Since CO2 emissions are projected to eventually
return to business-as-usual levels, the overall impact
of COVID-19 CO2 emission reductions on CO2 con-
centrations in the atmosphere and therefore on cli-
mate change is likely to be small in the long run
Forster et al (2020). The COVID-19 CO2 emission
reductions are similar in magnitude to those that
are necessary to mitigate the worst effects of climate
change. The COVID-19 crisis thus offers insights into
the substantial changes in behaviour and infrastruc-
ture that are necessary if we are to achieve the temper-
ature targets set out by the Paris Agreement. However,
the measures deployed in response to the COVID-19
pandemic are not suitable or sustainable in the long
term. These results support the need to create policies
for recovering from the current economic downturn
that do not further increase CO2 emissions but which
provide sustainable growth such as those outlined by
Hepburn et al (2020).

The simple linear regression models used in this
study could be used in the future to detect global scale
emissions changes. However, the results of this study
demonstrate that, using local measurements alone,
there will be a significant delay between changes in
global emissions and a detected signal in the local CO2

concentrations.

Data availability statement

CO2 data from the UK DECC network are available
from the Centre for Environmental Data Analysis
(CEDA) data archive (https://catalogue.ceda.ac.uk/
uuid/a18f43456c364789aac726ed365e41d1) DECC
(2020). Atmospheric CO2 data from Mace Head
is available at the ICOS Carbon Portal (https://
www.icos-cp.eu/): doi:10.18 160/ere9-9d85 Ramonet
et al (2020).

Acknowledgments

The UK DECC network operations were funded by
the UK Department of Business, Energy and Indus-
trial Strategy (BEIS) through contract 1537/06/2018
to the University of Bristol. The authors would like
to thank Kieran Stanley, Dickon Young, Ann Stavert,
Aoife Grant and Anita Ganesan at the University of
Bristol for setting up and running the DECC meas-
urement sites. We would also like to thank Dr Adam
Wisher, the specialist technician at Tacolneston, for
maintaining the instrument. The Mace Head data is
provided by ICOS.Maintenance of the Heathfield site
measurements is supported byUKNationalMeasure-
ment System funding to the National Physical Labor-
atory. H F Dacre is funded by the NERC Detection
and Attribution of Regional greenhouse gas Emis-
sions in the UK (DARE-UK) project NE/S004505/1.

ORCID iDs

H F Dacre https://orcid.org/0000-0003-4328-9126
L MWestern https://orcid.org/0000-0002-0043-
711X
D Say https://orcid.org/0000-0003-3615-7926

References

Andreoni V 2021 Estimating the European CO2 emissions change
due to COVID-19 restrictions Sci. Total Environ. 769 145115

Ballard S P, Li Z, Simonin D and Caron J F 2016 Performance of
4D-Var NWP-based nowcasting of precipitation at the Met
Office for summer 2012 Q. J. R. Meteorol. Soc. 142 472–87

Carslaw D C and Beevers S D 2005 Development of an urban
inventory for road transport emissions of NO2 and
comparison with estimates derived from ambient
measurements Atmos. Environ. 39 2049–59

Clark P, Roberts N, Lean H, Ballard S P and Charlton-Perez C
2016 Convection-permitting models: a step-change in
rainfall forecastingMeteorol. Appl. 23 165–81

Dacre H F, Mortimer A H and Neal L S 2020 How have surface
NO2 concentrations changed as a result of the UK’s
COVID-19 travel restrictions? Environ. Res. Lett. 15 104089

DECC 2020 Deriving Emissions linked to Climate Change(DECC)
Network (available at: http://data.ceda.ac.uk/badc/ukdecc-
network) (accessed April 2020)

Forster P M et al 2020 Current and future global climate impacts
resulting from COVID-19 Nat. Clim. Change 10 913–19

Friedlingstein P et al 2020 Global carbon budget 2020 Earth Syst.
Sci. Data 12 3269–340

Granados J A T, Ionides E L and Carpintero o 2012 Climate
change and the world economy: short-run determinants of
atmospheric CO2 Environ. Sci. Policy 21 50–62

Hale G and Leduc S 2020 COVID-19 and CO2 FRBSF Economic
Lett. 2020 1–06

Harvey N J, Hogan R J and Dacre H F 2013 A method to diagnose
boundary-layer type using Doppler lidar Q. J. R. Meteorol.
Soc. 139 1681–93

Harvey N J, Hogan R J and Dacre H F 2015 Evaluation of
boundary-layer type in a weather forecast model utilizing
long-term Doppler lidar observations Q. J. R. Meteorol. Soc.
141 1345–53

10

https://catalogue.ceda.ac.uk/uuid/a18f43456c364789aac726ed365e41d1
https://catalogue.ceda.ac.uk/uuid/a18f43456c364789aac726ed365e41d1
https://www.icos-cp.eu/
https://www.icos-cp.eu/
https://orcid.org/0000-0003-4328-9126
https://orcid.org/0000-0003-4328-9126
https://orcid.org/0000-0002-0043-711X
https://orcid.org/0000-0002-0043-711X
https://orcid.org/0000-0002-0043-711X
https://orcid.org/0000-0003-3615-7926
https://orcid.org/0000-0003-3615-7926
https://doi.org/10.1016/j.scitotenv.2021.145115
https://doi.org/10.1016/j.scitotenv.2021.145115
https://doi.org/10.1002/qj.2665
https://doi.org/10.1002/qj.2665
https://doi.org/10.1016/j.atmosenv.2004.12.024
https://doi.org/10.1016/j.atmosenv.2004.12.024
https://doi.org/10.1002/met.1538
https://doi.org/10.1002/met.1538
https://doi.org/10.1088/1748-9326/abb6a2
https://doi.org/10.1088/1748-9326/abb6a2
http://data.ceda.ac.uk/badc/ukdecc-network
http://data.ceda.ac.uk/badc/ukdecc-network
https://doi.org/10.1038/s41558-020-0883-0
https://doi.org/10.1038/s41558-020-0883-0
https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/10.1016/j.envsci.2012.03.008
https://doi.org/10.1016/j.envsci.2012.03.008
https://doi.org/10.1002/qj.2068
https://doi.org/10.1002/qj.2068
https://doi.org/10.1002/qj.2444
https://doi.org/10.1002/qj.2444


Environ. Res. Lett. 16 (2021) 094043 H F Dacre et al

Hepburn C, O’Callaghan B, Stern N, Stiglitz J and Zenghelis D
2020 Will COVID-19 fiscal recovery packages accelerate or
retard progress on climate change? Oxford Rev. Economic
Policy 36 (https://www.smithschool.ox.ac.uk/
publications/wpapers/workingpaper20-02.pdf)

IPCC, 2018: Summary for policymakers In: Global Warming of
1.5 ◦C. An IPCC Special Report on the impacts of global
warming of 1.5 ◦C above pre-industrial levels and related
global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate
change, sustainable development, and efforts to eradicate
poverty [Masson-Delmotte V, et al (eds.)]World
Meteorological Organization, Geneva, Switzerland, p 32

Le Quéré C et al 2020 Temporary reduction in daily global CO2

emissions during the COVID-19 forced confinement Nat.
Clim. Change 10 647–53

Lean HW, Clark P A, Dixon M, Roberts N M, Fitch A, Forbes R
and Halliwell C 2008 Characteristics of high-resolution
versions of the Met Office Unified Model for forecasting
convection over the United KingdomMon. Weather Rev.
136 3408–24

Liu Z, Deng Z, Ciais P, Lei R, Feng S, Davis S J, Wang Y, Yue X,
Lei Y, Zhou H and Cai Z, 2020 2020 COVID-19 causes
record decline in global CO2 emissions Preprint (available
at: http://arxiv.org/abs/2004.13614)

Manning A J, O’Doherty S, Jones A R, Simmonds P G and
Derwent R G 2011 Estimating UK methane and nitrous
oxide emissions from 1990 to 2007 using an inversion
modeling approach J. Geophys. Res.: Atmos. 116 D2

Mitra A, Ray Chadhuri T, Mitra A, Pramanick P and Zaman S
2020 Impact of COVID-19 related shutdown on
atmospheric carbon dioxide level in the city of Kolkata
Parana J. Sci. Edu. 6 84–92

Quadrelli R and Peterson S 2007 The energy–climate challenge:
recent trends in CO2 emissions from fuel combustion
Energy Policy 35 5938–52

Ramonet M 2020 The fingerprint of the summer 2018 drought in
Europe on ground-based atmospheric CO2 measurements

Philosophical Transactions of the Royal Society B 375
20190513

Roberts N M and Lean HW 2008 Scale-selective verification of
rainfall accumulations from high-resolution forecasts of
convective eventsMon. Weather Rev. 136 78–97

Samset B H, Fuglestvedt J S and Lund M T 2020 Delayed
emergence of a global temperature response after emission
mitigation Nat. Commun. 11 1–10

Shi J P and Harrison R M 1997 Regression modelling of hourly
NOx and NO2 concentrations in urban air in London
Atmos. Environ. 31 4081–94

Sitch S et al 2015 Recent trends and drivers of regional
sources and sinks of carbon dioxide Biogeosciences
12 653–79

Stainforth D A et al 2005 Uncertainty in predictions of the climate
response to rising levels of greenhouse gases Nature
433 403–6

Stanley K M et al 2018 Greenhouse gas measurements from a UK
network of tall towers: technical description and first results
Atmos. Meas. Tech. 11 1437–58

Stavert A R, O’Doherty S, Stanley K, Young D, Manning A J,
Lunt M F, Rennick C and Arnold T 2019 UK greenhouse gas
measurements at two new tall towers for aiding emissions
verification Atmos. Meas. Tech. 12 4495–518

Tang Y, Lean HW and Bornemann J 2013 The benefits of the Met
Office variable resolution NWP model for forecasting
convectionMeteorol. Appl. 20 417–26

Taylor K E and Penner J E 1994 Response of the climate system to
atmospheric aerosols and greenhouse gases Nature
369 734–7

Tebaldi C and Friedlingstein P 2013 Delayed detection of climate
mitigation benefits due to climate inertia and variability
Proc. Natl Acad. Sci. 110 17229–34

Vardag S N, Hammer S, O’Doherty S, Spain T G, Wastine B,
Jordan A and Levin I 2014 Comparisons of continuous
atmospheric CH4, CO2 and N2Omeasurements–results
from a travelling instrument campaign at Mace Head Atmos.
Chem. Phys. 14 8403–18

11

https://www.smithschool.ox.ac.uk/publications/wpapers/workingpaper20-02.pdf
https://www.smithschool.ox.ac.uk/publications/wpapers/workingpaper20-02.pdf
https://doi.org/10.1038/s41558-020-0797-x
https://doi.org/10.1038/s41558-020-0797-x
https://doi.org/10.1175/2008MWR2332.1
https://doi.org/10.1175/2008MWR2332.1
http://arxiv.org/abs/2004.13614
https://doi.org/10.1029/2010JD014763
https://doi.org/10.1029/2010JD014763
https://doi.org/10.1016/j.enpol.2007.07.001
https://doi.org/10.1016/j.enpol.2007.07.001
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1038/s41467-020-17001-1
https://doi.org/10.1038/s41467-020-17001-1
https://doi.org/10.1016/S1352-2310(97)00282-3
https://doi.org/10.1016/S1352-2310(97)00282-3
https://doi.org/10.5194/bg-12-653-2015
https://doi.org/10.5194/bg-12-653-2015
https://doi.org/10.1038/nature03301
https://doi.org/10.1038/nature03301
https://doi.org/10.5194/amt-11-1437-2018
https://doi.org/10.5194/amt-11-1437-2018
https://doi.org/10.5194/amt-12-4495-2019
https://doi.org/10.5194/amt-12-4495-2019
https://doi.org/10.1002/met.1300
https://doi.org/10.1002/met.1300
https://doi.org/10.1038/369734a0
https://doi.org/10.1038/369734a0
https://doi.org/10.1073/pnas.1300005110
https://doi.org/10.1073/pnas.1300005110
https://doi.org/10.5194/acp-14-8403-2014
https://doi.org/10.5194/acp-14-8403-2014

	Detectability of COVID-19 global emissions reductions in local CO2 concentration measurements
	1. Introduction
	2. Data
	2.1. CO2 data
	2.2. Meteorological data

	3. MLR modelling
	4. Evaluation of predicted CO2 concentrations
	4.1. Annual and seasonal CO2 concentration variability
	4.2. Daily CO2 concentration variability
	4.3. MLR model evaluation

	5. Global CO2 emission scenarios
	6. Conclusions
	Acknowledgments
	References


