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Abstract
Good representation of turbulence in urban canopy models is necessary for accurate pre-
diction of momentum and scalar distribution in and above urban canopies. To develop and
improve turbulence closure schemes for one-dimensional multi-layer urban canopy models,
turbulence characteristics are investigated here by analyzing existing large-eddy simulation
and direct numerical simulation data. A range of geometries and flow regimes are analyzed
that span packing densities of 0.0625 to 0.44, different building array configurations (cubes
and cuboids, aligned and staggered arrays, andvariable buildingheight), anddifferent incident
wind directions (0◦ and 45◦ with regards to the building face). Momentum mixing-length
profiles share similar characteristics across the range of geometries, making a first-order
momentum mixing-length turbulence closure a promising approach. In vegetation canopies
turbulence is dominated by mixing-layer eddies of a scale determined by the canopy-top
shear length scale. No relationship was found between the depth-averaged momentum mix-
ing length within the canopy and the canopy-top shear length scale in the present study. By
careful specification of the intrinsic averaging operator in the canopy, an often-overlooked
term that accounts for changes in plan area density with height is included in a first-order
momentum mixing-length turbulence closure model. For an array of variable-height build-
ings, its omission leads to velocity overestimation of up to 17%. Additionally, we observe
that the von Kármán coefficient varies between 0.20 and 0.51 across simulations, which is
the first time such a range of values has been documented. When driving flow is oblique to
the building faces, the ratio of dispersive to turbulent momentum flux is larger than unity in
the lower half of the canopy, and wake production becomes significant compared to shear
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production of turbulent momentum flux. It is probable that dispersive momentum fluxes are
more significant than previously thought in real urban settings, where the wind direction is
almost always oblique.

Keywords Dispersive stress · Mixing length · Numerical simulation · Urban canopy
parametrization · von Kármán constant

1 Introduction

Urban canopies are highly heterogeneous with unsteady three-dimensional flow. To repre-
sent such heterogeneity, particularly in larger-scale simulations that cannot explicitly resolve
microscale flow characteristics, parametrizations of turbulence, drag, and surface energy
exchange are required (e.g., Masson 2006; Salamanca et al. 2010; Grimmond et al. 2011;
Krayenhoff et al. 2014, 2020). These parameterizations of urban canopy processes are criti-
cal in air quality models (AQMs) and numerical weather prediction (NWP) models, both to
reliably predict pollution concentration, temperature, and wind speed in urban areas, and to
provide a lower boundary condition to the larger-scale flow. Modelled urban-flow character-
istics are also required to inform effective urban planning aimed at mitigating pollution and
heat exposure, providing crucial foundations in epidemiological studies.

The simplest approaches to incorporating the influence of the urban canopy on turbulent
exchange are based on using bulk morphological surface characteristics or micrometeoro-
logical methods to determine aerodynamic roughness length z0 and displacement height d ,
which in turn are used in Monin–Obukhov similarity theory (MOST) (Grimmond and Oke
1999). Most mesoscale NWP models now employ single-layer urban canopy models where
the exchange between the air and the urban facets is calculated according to MOST, and
the contributions from the facets are combined using aerodynamical resistance networks and
coupled at the first atmospheric level above the canopy (Masson 2000; Kusaka et al. 2001;
Porson et al. 2010).

Multi-layer urban canopy models have several layers within the canopy and form part
of the NWP boundary-layer scheme, rather than the surface-layer scheme, with coupling
between the two at every layer (Martilli et al. 2002; Kondo et al. 2005; Schoetter et al.
2020). This avoids the use of simple relations such as exponential velocity profiles to extrap-
olate down from the bottom atmospheric level and predict values within the canopy. The
time- and horizontally space-averaged (double-averaged) equations of motion are solved
with terms explicitly representing turbulence and form drag, enabling a more physically
based parametrization. Multiple levels within the canopy also in theory enable multiple
sources (for example, of anthropogenic emissions) and two-way exchanges with the built
environment at multiple heights.

The multi-layer approach becomes increasingly appealing as NWP and climate models
move to sub-kilometre horizontal grid lengths (Barlow et al. 2017; Lean et al. 2019), where
neighbourhood scale surface characteristics start to become resolved. The building geometry
and flow becomes more statistically homogeneous within each model grid cell (unless there
are wakes from isolated tall buildings), consistent with solving double-averaged equations.
NWP systems that are coupled to multi-layer urban canopy models have been shown to give
improved wind-speed and temperature prediction in the canopy in comparison with simple
MOST surface representations (Gutiérrez et al. 2015), and also compared to single-layer
urban canopy models in the case of temperature (Salamanca et al. 2011).
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Much of the inspiration for urban canopy turbulence and drag parametrization devel-
opment has come from the vegetation canopy literature. The vegetation canopy-top shear
layer is viewed as a plane mixing layer (Raupach et al. 1996), where the drag of the canopy
elements reduces the flow velocity below the canopy-top and causes an inflection in the
double-averaged velocity profile, which in turn generates Kelvin–Helmholtz waves. The
latter themselves undergo secondary instabilities that lead to the formation of large three-
dimensional eddies. Vegetation canopy elements are usually either very close together (for
example in wheat crops) or form a porous mesh (for example the foliage in a rainforest
crown), so the mixing-layer eddies generated at canopy top are much larger than the sepa-
ration of canopy elements (Raupach et al. 1996). These eddies are not local to the canopy
elements and are the dominant turbulent motions in the canopy, a point that supports the use
of a constant turbulent length scale in vegetation canopy models (Finnigan 2000; Harman
and Finnigan 2007; Finnigan et al. 2015).

There are distinct differences between urban and vegetation canopies. The shear generated
at the top of urban canopies is more local to the canopy elements than in vegetation canopies
(Coceal et al. 2007a). Also, flow separation occurs at the edges of buildings causing vortex
shedding and sometimes also turbulent flapping motions at canopy top (Coceal et al. 2007b;
Perret and Savory 2013). In current urban canopy models that solve the double-averaged
equations, a constant turbulent length scale is often used throughout the entire depth of the
canopy (Santiago and Martilli 2010; Schoetter et al. 2020), and the mixing-layer analogy is
sometimes used as justification (Hamdi and Masson 2008). To evaluate this assumption, the
extent to which canopy top mixing-layer-type turbulence contributes to momentum transport
within different urban canopy geometries requires investigation.

Additionally, the solid fraction in urban canopies is typically much larger than in vege-
tation canopies. The flow has to deviate more around the obstacles, and time-averaged flow
patterns exhibit appreciable dispersive transport of momentum, which is distinct from turbu-
lent transport. A recent study of a realistic urban canopy geometry conducted by Giometto
et al. (2016) found that the dispersive momentum flux (DMF) can be as significant as the tur-
bulent momentum flux (TMF), which is greater than previously thought. Also, Schmid et al.
(2019) argue that, due to the non-negligible solid fraction of the urban canopy, more attention
needs to be paid to the formal definition of the spatial average operator. When the intrinsic
spatial average (an average only within the fluid volume) is applied to vertical derivatives of
flow quantities, a generally overlooked term appears that accounts for changing solid fraction
with height (see Sect. 3.2). The importance of including this term in urban canopy turbulence
closures for velocity prediction needs to be investigated.

Despite its well-known limitations, a first-order momentummixing-length turbulence clo-
sure approachhas been successfully applied in vegetation canopies (Poggi et al. 2004;Harman
and Finnigan 2007), and is simple and flexible, requiring no extra prognostic equations. We
take inspiration from this pragmatic approach and in Sect. 3.4 formulate amomentummixing-
length closure suitable for urban canopies, which, following Schmid et al. (2019), accounts
for the non-negligible urban solid fraction.

There have been various investigations of turbulent and dispersive momentum transport
in urban canopies (e.g., Roth 2000; Belcher 2005; Coceal et al. 2007a; Takimoto et al. 2011;
Nazarian et al. 2020), but this study is unprecedented in the range of large-eddy simulation
(LES) and direct numerical simulation (DNS) datasets available. We take advantage of this
rich source of data to: (1) characterize the momentum mixing-length behaviour in the urban
surface layer and propose a general momentum mixing-length profile suitable for a wide
range of urban flows (Sects. 4.1–4.5), (2) determine the impact on predicted velocity when
the termaccounting for solid fraction height variation is includedwithin the turbulence closure
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Fig. 1 Plan view of selected geometries—(a) the λp = 0.25 aligned and (b) staggered cube geometries, and
(c) λp = 0.33 aligned cuboid geometry. The large black arrows denote the 0◦ and 45◦ driving-flow directions.
Note that only a subsection of the domains is shown here

(Sect. 4.6), (3) test the mixing-layer analogy for turbulence within urban canopies (Sect. 4.7),
and (4) explain the differences in DMF characteristics across geometries to motivate future
DMF parametrizations (Sect. 4.8).

2 Computational Fluid Dynamics Datasets

2.1 Large-Eddy Simulations

The analysis draws primarily on LES datasets described in Nazarian et al. (2020). A suite of
simulations were carried out for idealized urban-like staggered and aligned arrays of cubes
of uniform height. The flow was oriented perpendicular to the array, and the stratification
was neutral. The cases we study have packing densities (planar area fraction occupied by
obstacles) λp = 0.0625, 0.11, 0.16, 0.25, 0.35, 0.44 for staggered cubes, and λp = 0.0625,
0.44 for aligned cubes. A summary of the LES datasets is given in Table 1. Schematics in
Fig. 1a, b are illustrative of the aligned and staggered geometries respectively. The simulations
were performed using the Parallelized Large-Eddy Simulation Model (PALM) which solves
the non-hydrostatic incompressible Boussinesq equations (Raasch and Schröter 2001; Letzel
et al. 2008; Maronga et al. 2015). The subgrid turbulence parametrization is based on a
1.5-order closure (Deardorff 1980) that involves solving the subgrid scale (SGS) turbulence
kinetic energy (TKE) equation.

The flow is driven by a constant pressure gradient force Fp = ρu2τ /H , where ρ is the
density of dry air (taken to be 1 kg m−3), uτ ≈ 0.21 m s−1 is the wall friction velocity,
H = 7.4h is the domain height, and h is the mean average height of the obstacles. The grid
length in the x , y, and z directions, �xyz , is equal to h/32, except above z = 4h where �z

slowly increases.
The Reynolds number of the flow is Re = Uh/ν ≈ 106, which is in the fully rough

regime. Here U is the velocity at the top of the domain and ν is the molecular viscosity
of air. It has been demonstrated using LES that flow through cube arrays only has a weak
dependency on Re between 5× 103 and 5× 106 (Xie and Castro 2006). For momentum the
boundary conditions are no-slip at the ground and building surfaces, free-slip at the domain
top, and periodic in the horizontal. Spin-up time is 125h/uτ , and data are output every 20
timesteps, which corresponds to a time interval of 40 s or 0.46h/uτ . The time-averaging
interval is 250h/uτ . The time-averaged data are also ensemble averaged over repeating units
to effectively increase the averaging time.
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Table 1 LES and DNS datasets: prefixes N, B, and C represent data from Nazarian et al. (2020), Branford
et al. (2011), and Castro et al. (2017) respectively. Under “Case” numbers correspond to λp , S and A denote
staggered and aligned respectively, and cb and cd denote cubes and cuboids respectively

Dataset Case Method Nx Ny (L × W × H)/h Re

N-0625-S 0.0625 S 0◦ cb LES 6 3 24 × 12 × 7.4 106

N-11-S 0.11S 0◦ cb LES 6 3 18 × 9 × 7.4 106

N-16-S 0.16 S 0◦ cb LES 6 3 15 × 7.5 × 7.4 106

N-25-S 0.25 S 0◦ cb LES 6 3 12 × 6 × 7.4 106

N-35-S 0.35 S 0◦ cb LES 6 3 10 × 5 × 12 106

N-44-S 0.44 S 0◦ cb LES 6 3 9 × 4.5 × 7.4 106

N-0625-A 0.0625 A 0◦ cb LES 5 3 20 × 12 × 7.4 106

N-44-A 0.44 A 0◦ cb LES 5 3 7.5 × 4.5 × 7.4 106

B-25-A-0◦ 0.25 A 0◦ cb DNS 8 8 16 × 16 × 8 4750

B-25-A-45◦ 0.25 A 45◦ cb DNS 8 8 16 × 16 × 8 4750

C-33-A-0◦ 0.33 A 0◦ cd DNS 6 3 12 × 9 × 8 6500

C-33-A-45◦ 0.33 A 45◦ cd DNS 6 4 12 × 12 × 12 7500

The computational domains have Nx and Ny buildings in the x and y dimensions respectively. The dimensions
of the computational domains are L×W×H where L andW are the lengths along the x and y axes respectively,
and H is the domain height. h is the mean average height of the buildings. The orientations of the x and y
axes are defined in Fig. 1

2.2 Direct Numerical Simulations

Several DNS datasets are included in the analysis as summarized in Table 1. Unlike in the
LES approach, there is no subgrid parametrization in DNS and turbulent scales are resolved
through the majority of the dissipation spectrum. As seen in Table 1, a compromise is made
by reducing Re due to computational demands.

Branford et al. (2011) conducted simulations of flow through an aligned array ofλp = 0.25
cubes (see Fig. 1a for a schematic). Castro et al. (2017) documented simulations for an aligned
array of λp = 0.33 cuboids, with cuboid length-to-width ratio of 1/2 and height-to-length
ratio of 1, where the long faces were orientated perpendicular to the flow (see Fig. 1c for a
schematic). Both studies had neutral stratification, and forcing flow directions of 0◦ and 45◦
to the normal of the building faces. Throughout the entirety of each domain �xyz = h/32.
All time-averaged data are also ensemble-averaged over repeating units.

3 Double-Averaging Theory

In this section the double-averaged momentum equation and first-order momentum mixing-
length closure parametrization of the TMF term are given. The definitions of the spatial
average operator and spatial averaging theorem are first presented, since they are necessary in
deriving budget equations and parametrizations. The intrinsic first-order momentummixing-
length closure is used in later sections to investigate its use as an urban canopy turbulence
closure model and to explore the turbulence behaviour across different canopy geometries.
Equations are given using the intrinsic average and comprehensive average (where the spatial
average is done over the fluid and solid volume). Following Schmid et al. (2019), the impor-
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tance of representing λp height variation in the turbulence closure for predicted values of
velocity is investigated in the context of both horizontal averaging approaches (see Sect. 4.6).

3.1 Intrinsic and Comprehensive Averaging

In NWP models flow through canopies is often modelled at grid lengths much larger than
the typical turbulent eddies and obstacle wakes. An increasingly common approach in such
circumstances is to apply to the instantaneous equations temporal averaging over a longer
interval than the time scale of the slowest eddies and spatial averaging over a length scale
greater than the largest spatial deviations in the flow (Raupach and Shaw 1982; Nikora
et al. 2007; Martilli and Santiago 2007). A one-dimensional representation is taken, assum-
ing quasi-horizontal homogeneity of the flow and canopy geometry within vertically thin
horizontal-averaging slabs. Terms arise representing the effects of turbulence, form drag,
and persistent flow structures on vertical transport of momentum and scalars, and can sub-
sequently be parametrized.

In vegetation canopies the obstacles are considered to occupy a negligible fraction of the
canopy, and the comprehensive average (also known as the superficial or extrinsic average)
and intrinsic average are equivalent (Finnigan 2000). In porous media hydrodynamics, as in
urban canopies, the volume fraction occupied by obstacles can be more significant. At any
given height it is proportional to λp and it is well known that vertical changes in λp should
be treated when applying the spatial average operator (Nikora et al. 2007).

The use of the operators 〈φ〉, φ, φ̃, and φ′, on a variable φ defined only within the fluid
region, denote its horizontal spatial average, time average, dispersive fluctuations (φ̃ = φ −
〈φ〉), and turbulent fluctuations (φ′ = φ−〈φ〉), respectively. The intrinsic and comprehensive
spatial operators are defined by Whitaker (1999) as

〈φ〉I (t, z) = 1

V f

∫
x,y,z∈V f

φ(t, x, y, z) dV , (1)

and

〈φ〉C (t, z) = 1

V

∫
x,y,z∈V f

φ(t, x, y, z) dV , (2)

respectively. Here x , y, and z are spatial coordinates with z in the vertical, and t is time:
ε(z) = 1 − λp(z) is the fluid fraction: the ratio of fluid volume within a thin horizontal-
averaging slab, V f , to the total volume of the slab including the solid volume, V . The
relationship between the comprehensive (subscript C) and intrinsic (subscript I) average of
a quantity φ is given by 〈φ〉C = ε〈φ〉I .

The application of the comprehensive operator twice results in 〈〈φ〉C 〉C = ε〈φ〉C , whereas
for the intrinsic operator 〈〈φ〉I 〉I = 〈φ〉I . This means factors of ε appear in parametrizations
of comprehensive spatially-averaged quantities when they are functions of spatially-averaged
parameters.

The comprehensive averaging approach has a disadvantage when used to compute disper-
sive fluctuations (φ̃) of a variable φ, since interpretation of quantities involving dispersive
fluctuations can become more difficult (Schmid et al. 2019). When 〈φ〉C is non-zero, φ̃ is
non-zero in the building region. The dispersive flux due to the correlation of two such vari-
ables can then also be non-zero in the building region, which is physically unintuitive. In the
context of parametrizing vertical dispersive momentum (and scalar) fluxes the issue is not
important. They involve w̃, and 〈w〉C = 0 due to mass continuity, so they are zero in the
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building region. However, some terms in higher-order turbulence parametrization schemes
(e.g., wake production of TKE) involve dispersive fluctuations, and in the comprehensive
averaging framework would be non-zero in the building region, thus complicating their
parametrization.

There has been some debate in the recent literature on whether the intrinsic or compre-
hensive spatial average should be used in urban canopy modelling (Xie and Fuka 2018;
Schmid et al. 2019; Sützl et al. 2021). The double-averaged momentum equation (and bud-
get equations in general) derived using either method are equally valid if obtained correctly.
Equivalently to solving the intrinsic double-averaged momentum equation, one could solve
the comprehensive double-averaged momentum equation using parameters that have also
been derived using the comprehensive average, and then convert the predicted comprehen-
sive velocity to the intrinsic velocity via division by ε(z). Intrinsic average values are used
here since they are more directly representative of the fluid and hence easier to interpret phys-
ically. However, neither spatial averaging approach is being advocated in a parametrization
context.

3.2 Spatial Averaging Theorem

The relation between averages of spatial derivatives and spatial derivatives of averages is
given by the spatial averaging theorem (Whitaker 1999). For intrinsic averages

〈
∂φ

∂xi

〉
I

= ∂〈φ〉I
∂xi

+ 〈φ〉I
ε

∂ε

∂xi
+ 1

V f

∫∫
Sint

φni dS, (3)

and for comprehensive averages
〈
∂φ

∂xi

〉
C

= ∂〈φ〉C
∂xi

+ 1

V

∫∫
Sint

φni dS, (4)

where xi (x1 = x , x2 = y, x3 = z) is spatial location, Sint is the interface between the fluid
and solid regions, and ni is the unit vector normal to the interface directed from fluid to solid.

The first term on the right-hand side (r.h.s.) of Eq. 3 is the spatial derivative of the intrinsic
average φ. The second and third terms account for variations in ε (i.e., changes in averaging
volume) and discontinuities in flow properties over the surface of obstacles respectively.
The second term does not appear in Eq. 4 since the comprehensive averaging region does
not change with height. The first and second terms in the comprehensive spatial averaging
theorem have equivalent interpretations to the first and third terms in the intrinsic spatial
averaging theorem.

For horizontal derivatives (i = 1, 2), the second term on the r.h.s. of Eq. 3 is zero,
since the canopy is assumed horizontally homogeneous within the averaging region, so that
ε is only a function of z. The third term also vanishes for horizontal derivatives if φ is
constant at the fluid–solid interface, as is the case for velocity due to the no-slip boundary
condition. However, for example, pressure is variable at the interface, tending to be larger at
the windward than leeward obstacle faces. It is the discontinuity in the pressure field over
obstacles that gives rise to form drag.

For vertical derivatives (i = 3), the second term on the r.h.s. of Eq. 3 is non-zero every-
where that ε(z) varies and 〈φ〉I �= 0. The third term on the r.h.s. is only zero for vertical
derivatives of quantities like velocity, where φ = 0 at the vertical facing interfaces. Unlike
when calculating horizontal derivatives for the x−z and y−z plane interfaces, when cal-
culating vertical derivatives for the x−y plane interfaces there are no adjacent fluid–solid
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interfaces. Therefore, the third term on the r.h.s. cannot have cancellation of adjacent inter-
faces, and is non-zero so long as φ > 0.

3.3 Double-AveragedMomentum Equation

The approach of solving the double-averaged momentum equations in canopies was first
developed by Wilson and Shaw (1977) and Raupach and Shaw (1982). The influence of
changing solid fraction was treated as negligible in the context of vegetation canopies, where
comprehensive and intrinsic averaged values are approximately equal.

The double-averaged momentum equation can be obtained by first applying the time-
averaging operator to the instantaneous momentum equation to obtain the time-averaged
momentum equation, then applying the spatial averaging operator, taking particular care
with use of the spatial averaging theorem. The intrinsic and comprehensive double-averaged
momentum equations for a statistically stationary, horizontally homogeneous flow at height
z in the canopy are given by (Schmid et al. 2019)

∂〈u′
iw

′〉I + 〈ũi w̃〉I
∂z

+ 1

ε

(
〈u′

iw
′〉I + 〈ũi w̃〉I

) ∂ε

∂z
= 〈Fp〉I − 1

ρ

〈
∂ p̃

∂xi

〉
I
, (5)

and

∂〈u′
iw

′〉C + 〈ũi w̃〉C
∂z

= 〈Fp〉C − 1

ρ

〈
∂ p̃

∂xi

〉
C

, (6)

respectively. Here ρ is the density of dry air, p is pressure, Fp is a volumetric body force
driving the flow and ui are velocity components (u1 = u, u2 = v, u3 = w). It has been
assumed that atmospheric stability is neutral, that the Coriolis force and molecular transport
are negligible, and that the viscous drag can be neglected since it is usually only a few percent
of the total drag, as discussed in Leonardi and Castro (2010).

The first and second terms on the left-hand sides (l.h.s.) of Eqs. 5 and 6 are the gradients of
the TMF and DMF respectively. They are generally negative within the canopy, while above
the canopy the TMF gradient is positive and the DMF gradient can be positive or negative
but becomes negligible in the inertial sublayer.

The third and fourth terms on the left-hand side of Eq. 5, which are not usually included
in urban canopy literature, appear due to the second term on the r.h.s. of Eq. 3. When ε(z)
increases with height, vertical momentum transport occurs through a larger cross-sectional
area, and consequently the intrinsic averaged TMF and DMF decrease. The extra terms act
to increase the contribution of the intrinsic averaged vertical TMF and DMF gradients to the
double-average momentum equation, when momentum transport occurs through increasing
cross-sectional area with height.

The first term on the r.h.s. of Eqs. 5 and 6 is a body force applied uniformly throughout the
fluid and drives the flow in the computational fluid dynamics (CFD) simulations. It is noted
here that a mean streamwise pressure gradient is not actually present within the fluid in the
CFD simulations, so 〈Fp〉 does not arise from spatial averaging of the time-averaged pressure
gradient term,−(1/ρ)∂ p/∂xi , and should be included as a separate term in the instantaneous
momentum equation when deriving Eq. 5. The second term on the r.h.s. of Eqs. 5 and 6 is
the form drag exerted by the obstacles and is the sink of momentum in the canopy. It appears
after spatial averaging of the time-averaged pressure gradient term.
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3.4 Parametrization of Momentum Fluxes

K -theory is often used to parametrize the TMF term in Eqs. 5 and 6. The momentum eddy-
diffusivity Km,i can be represented using a first-order momentum mixing-length-closure
approach, where lm,i is the momentum mixing length. It is well known that Prandtl-mixing-
length-type turbulence closures break downwhen applied to the local flow in urban canopies,
for example, due to counter-gradient momentum transport in buildingwakes. Themomentum
mixing-length closure is therefore formulated in terms of horizontally-averaged properties
of the flow, so that for intrinsic averages

〈u′
iw

′〉I = −〈Km,i 〉I
〈
∂ui
∂z

〉
I

= −〈lm,i 〉2I
∣∣∣∣
〈
∂ui
∂z

〉
I

∣∣∣∣
〈
∂ui
∂z

〉
I

= −〈lm,i 〉2I
∣∣∣∣∂〈ui 〉I

∂z
+ 〈ui 〉I

ε

∂ε

∂z

∣∣∣∣
(

∂〈ui 〉I
∂z

+ 〈ui 〉I
ε

∂ε

∂z

)
,

(7)

and for comprehensive averages

〈u′
iw

′〉C = −1

ε
〈Km,i 〉C 〈∂ui

∂z
〉C = − 1

ε3
〈lm,i 〉2C

∣∣∣∣∂〈ui 〉C
∂z

∣∣∣∣ ∂〈ui 〉C
∂z

. (8)

〈Km,i 〉 and 〈lm,i 〉 are parameters representing the global properties of the flow at height z.
The modulus operators ensure 〈Km,i 〉 is positive and that turbulent diffusion is only down-
gradient. The ε terms in Eq. 7 occur due to the second term on the r.h.s. of the intrinsic spatial
averaging theorem; ε−3 occurs in Eq. 8 to balance the number of comprehensive spatial
averaging operator applications on the l.h.s. and r.h.s., accounting for the zeros introduced
into the horizontal average by the building volume.

Schmid et al. (2019) derived the same intrinsic and comprehensive mixing-length closures
(although without the modulus operator). However, they started from application of the
horizontal averaging operator to parameters representing the local flow. Following use of their
Eqs. 10 and 11, the derivation involved neglecting correlations between spatial fluctuations
of lm (l̃m), and between l̃m and spatial fluctuations of ∂〈u〉/∂z. This implies that our approach
of starting from global properties of the flow assumes spatial fluctuations are small or terms
involving them largely cancel.

3.5 Application to Urban Canopy Geometry

The i = 1 and i = 2 components of double-averaged flow properties (e.g., 〈u〉 and 〈u′w′〉,
and 〈v〉 and 〈v′w′〉) in general take different values, except in the special casewhen the canopy
has lateral symmetry and the driving flow has equal components in the x and y axes. As an
approximation one could use the same turbulent parameters in both axes, and derive them
with the x axis aligned with the driving flow direction. However, given urban morphology
information such as the frontal area variation with driving flow angle, it is conceivable that
parametrizations might be developed that account for flow direction relative to the two axes.
We therefore analyze separately the i = 1 and i = 2 TMF components.

In real-world urban canopies the double-averaged flow properties are never exactly the
same along the two axes, but the 0◦ driving flow andB-25-A-45◦ simulations are special cases
for which subscript i can be dropped from 〈lm〉 and 〈Km〉. In the 0◦ driving-flow simulations
turbulence is not the same in the two axes but 〈v′w′〉 ≈ 0 so the i = 2 component of the
turbulent momentum flux need not be represented. For B-25-A-45◦ the canopy is symmetric
about the driving-flow direction and the driving flow has equal components in the x and
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y axes, so that 〈lm,1〉 = 〈lm,2〉 and 〈Km,1〉 = 〈Km,2〉. In this study the i = 1 and i = 2
components only need to be retained for C-33-A-45◦ where the geometry is asymmetric
about the streamwise axis.

A pragmatic approach to parametrizing the DMF is to include it with the TMF on the
l.h.s. of Eq. 7 (Simón-Moral et al. 2017; Nazarian et al. 2020). Horizontally-averaged DMF
can be negative or positive at different heights within the canopy, but when summed with
the horizontally-averaged TMF the total tends to be negative. The DMF can thereby be
parametrized using K -theory but avoiding the unphysical scenario where 〈Km〉 becomes
negative, which would occur if the DMF was parametrized separately.

K -theory assumes that turbulent fluctuations are related to local gradients. Although it
seems plausible that downward transport of momentum from higher in the canopy leads to
increased velocity lower in the canopy, it has not been demonstrated that there is a strong
relation betweenDMFand local velocity gradients in urban canopies. Time-averagedmotions
might largely be determined by non-local forcings. For example recirculationswithin building
wakes often span the entire depth of the canopy, and are likely largely driven by strong shear
at roof level behind the buildings, rather than local velocity gradients within the wake. An
analogy can be drawn from two-dimensional street canyon literature where it is well known
that recirculationwithin the canyon can bemodelled as solid body rotation (Caton et al. 2003).
Recirculation is driven by the flow above the canyon and occurs due to the requirements that
tangential stresses be continuous at cavity top, andmasswithin the cavity be conserved. Flows
in urban canopies consisting of cuboidal buildings are more three-dimensional in nature,
and streamlines can diverge in the spanwise direction within building wakes, but it seems
reasonable to assume that canopy recirculations share some properties with two-dimensional
street canyons.

Since the aim is for the first-order turbulence parametrization presented here to be applica-
ble tomulti-layer urban canopymodels in general and to analyze the turbulent flow properties
using 〈lm〉, it is chosen not to include the DMF in the turbulence closure; 〈lm〉 can be
interpreted as a length scale that describes only the turbulence. The horizontal-average and
three-dimensional characteristics of the DMF are investigated across geometries in Sect. 4.8,
as a first step towards developing separate parametrizations of DMF.

4 Results and Discussion

4.1 Mixing LengthWithin the Canopy

It is investigated whether 〈lm〉I (calculated using Eq. 7) shares similar characteristics within
the canopy across different idealized urban geometries and driving-flow directions. Figures 2
and 3 correspond to the 0◦ and 45◦ driving flow datasets, respectively. In both figures, plots
a–e correspond to intrinsic average profiles of velocity, TMF, DMF, the ratio of DMF to
TMF and momentum mixing length, respectively. Figure 2f shows 〈lm〉I normalized by the
maximum mixing length 〈lm〉max

I within the canopy. The DMF profiles are discussed later in
Sect. 4.8.

4.1.1 0◦ Driving FlowMixing Length Characteristics

There is some collapse in the 0◦ simulation 〈lm〉I profiles from Fig. 2e when normalized by
〈lm〉max

I in Fig. 2f. The shear is largest near the surface and at canopy top so that 〈lm〉I is
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Fig. 2 Intrinsic double-averaged profiles of the 0◦ driving flows. (a) x-component of velocity, (b) TMF, (c)
DMF, (d) ratio of DMF to TMF, (e) 〈lm 〉I /h, and (f) 〈lm 〉I /〈lm 〉max

I

smaller there. 〈lm〉max
I occurs at z/h ≈ 0.6, since the minimum gradient of double-averaged

velocity tends to occur near the middle of the canopy (Fig. 2a), but the magnitude of TMF
increases with height within the canopy (Fig. 2b). This description of 〈lm〉I is consistent with
Coceal et al. (2006) for a λp = 0.25 staggered cube dataset and is qualitatively similar to the
turbulent length scales presented in Fig. 9a of Nazarian et al. (2020).

From Fig. 2e it can be seen that 〈lm〉max
I does not vary monotonically with λp for either

the aligned or staggered geometries. This has also been observed for staggered geometries
when turbulent length scales are calculated with the sum of DMF and TMF, as presented by
Nazarian et al. (2020); 〈lm〉max

I ≈ 0.3 across the 0◦ simulations apart from the N-11-S and
N-16-S simulations which have 〈lm〉max

I ≈ 0.43.
The 〈lm〉I peaks are broader for N-44-A, B-25-A-0◦ and C-33-A-0◦ than the other

geometries since the double-averaged velocity profiles are approximately linear between
z/h = 0.15−0.85, so that the gradient of double-averaged velocity varies little in the middle
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of the canopy. The 0◦ aligned simulations tend to have 〈lm〉max
I higher within the canopy

than the 0◦ staggered simulations, since the double-averaged velocity gradient (or shear)
within the canopy does not increase significantly until very close to canopy top in the 0◦
aligned simulations. For the same λp , the aligned geometries have larger double-averaged
velocity and TMF than staggered geometries. The aligned geometries have unobstructed
channelling regions (see Fig. 1a) where flow is fast and there is large shear, which promotes
shear production of TMF.

The magnitude of TMF generally decreases with increasing λp throughout the canopy
as seen in Fig. 2b, particularly for the staggered geometries. A possible explanation is that
increasing λp results in less mean kinetic energy penetrating into the canopy, particularly for
the staggered arrays where there is more flow obstruction, and therefore less conversion into
TKE. TMF and TKE have broadly similar dependence on λp and aligned versus staggered
canopy geometry as seen from Fig. 6 of Nazarian et al. (2020).

Between z/h = 0.34−0.44 theN-44-S simulation TMF just becomes positive so that flow
is counter-gradient, and 〈lm〉I cannot be computed. A first-order momentum mixing-length-
closure approach is less suitable for very high-density idealized staggered arrays. Future
investigations are required to explore whether this is the case in more realistic staggered type
urban geometries, where there is more horizontal randomness in positioning of buildings.

The N-25-S, N-35-S and N-44-S simulations have negative double-averaged velocity
near the surface as seen in Fig. 2a. Inspection of individual velocity profiles (not shown)
indicates that regions of recirculation, both upstream of the windward and downstream of
the leeward faces of the cubes, tend to have negative velocity near the surface. The N-25-S,
N-35-S and N-44-S simulations have recirculation regions in a large portion of the flow.
In these denser staggered configurations the contribution of negative near-surface flow in
the recirculations dominates the spatial average. The aligned simulations have channelling
regions where there is no obstruction of the flow, and there is large positive velocity near the
surface. The contribution from such regions to the spatial average results in positive overall
double-averaged velocity near the surface. The gradient of double-averaged velocity between
the surface and the first grid point above the surface is negative in the N-25-S, N-35-S and
N-44-S simulations, and along with TMF being positive above the surface (Fig. 2b), means
that 〈lm〉I at the first grid point above the surface cannot be computed, since transport is
counter-gradient.

4.1.2 Impact of Flow Incidence Angle on Mixing-Length Characteristics

The 45◦ driving-flow simulations in Fig. 3e have larger 〈lm〉I in the canopy than their corre-
sponding 0◦ driving-flow simulations in Fig. 2e. Figure 3e shows that 〈lm〉max

I is largest for
B-25-A-45◦, and is equal to 2.2h at z/h = 0.25 (off the axis). This is unphysical considering
that eddies cannot be so large due to the limiting effect of the ground, and the largest eddies
are not expected to exceed h in any case. 〈lm〉max

I occurs at z/h = 0.31 and z/h = 0.75 for
〈lm,1〉I and 〈lm,2〉I respectively in the C-33-A-45◦ simulation. Since 〈lm,1〉I and 〈lm,2〉I are
parameters describing the turbulence in the x and y directions, it is evident that turbulence
characteristics can be significantly different in the two axes, when the geometry of the urban
canopy is not diagonally symmetric.

The 45◦ driving flow 〈lm〉I are large because the double-averaged velocity profiles (Fig. 3a)
have small gradients (except near the ground and canopy top), but significant TMF (Fig. 3b).
There are two possible explanations for significant TMF despite small shear (i) there is large
transport of TMF down into the canopy (see Finnigan (2000), Eq. 2.11 for a definition)
and (ii) there is large wake production of TMF. Either way, this indicates that a first-order
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Fig. 3 Intrinsic double-averaged profiles of the 45◦ driving flows. (a–e) are the same as in Fig. 2 except that
both i = 1 and i = 2 components are given for C-33-A-45◦. B-25-A-45◦ has only one curve because the
canopy is symmetric about the flow direction, and the average of the i = 1 and i = 2 components is plotted

momentum mixing-length-closure approach may be less appropriate for oblique flows, since
the approach assumes TMF is related to (i) the local flow (implying TMF has not been
transported) and (ii) vertical velocity gradients (but wake production involves vertical and
horizontal gradients of spatial velocity fluctuations).

Shear production of TMF is given by

Ps,ik = −〈u′
j u

′
k〉

∂〈ui 〉
∂x j

− 〈u′
i u

′
j 〉

∂〈uk〉
∂x j

− 〈u′
j u

′
k〉〈ui 〉 + 〈u′

i u
′
j 〉〈uk〉

ε

∂ε

∂x j
. (9)

The third term on the r.h.s. is a new term that does not appear in Eq. 2.11 of Finnigan (2000),
and arises from accounting for changes in λp with height, when applying the intrinsic spatial
averaging operator to the time-averaged TMF budget equation. For uniform-height canopies
it is only non-zero at canopy top. Wake production of TMF is due to correlations between
spatial deviations in turbulent stresses and gradients of spatial deviations in velocity, typically
caused by building wakes and deviation of the flow around buildings, and is given by
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Pw,ik = −〈˜u′
j u

′
k
∂ ũi
∂x j

〉 − 〈˜u′
i u

′
j
∂ ũk
∂x j

〉. (10)

Plotted in Fig. 4a, b are the shear and wake production of TMF respectively, and Fig. 4c
shows their ratio (Pw/Ps). The production of 〈u′w′〉I is plotted for the 0◦ driving flows, the
production of 〈u′w′〉I and 〈v′w′〉I for C-33-A-45◦, and the average of the two components
for B-25-A-45◦. All geometries have a large Ps peak at canopy top, as expected due to the
canopy-top shear layer. The staggered geometries and N-0625-A have a small Ps peak near
the surface because the double-averaged velocity gradient is large there, and is associatedwith
flow reversal in the denser staggered cases. Between z/h = 0.2−0.8 the aligned geometries
tend to have larger Ps than the staggered geometries, particularly the denser ones. In general
Pw is positive near the ground (i.e., acts as a TMF sink), becomes negative and increases
in magnitude with height within the canopy, then changes sign and has a positive peak at
canopy top, before becoming negligible in the inertial sublayer. The largest outlier is N-44-S,
which has positive Pw in the middle of the canopy.

In vegetation canopies it is generally assumed that Ps dominates Pw (Raupach et al. 1986).
However, from Fig. 4c it can be seen that this is not always the case for urban canopies,
particularly for the 45◦ driving flows, and away from the canopy top and ground where Ps
is smaller. The 45◦ driving flows tend to have large DMF (as discussed in Sect. 4.8.2). It is
unlikely that Pw andDMF are both large by chance, since they are both associatedwith spatial
fluctuations in the flow. Also, a key assumption in the arguments presented by Raupach and
Shaw (1982) and Raupach et al. (1986) for Ps dominating Pw, is that terms involving spatial
deviations in the time-mean flow are negligible. This is often not true for urban canopies (as
demonstrated for the case of DMF in Sect. 4.8.2).

In addition to the 45◦ driving-flow simulations, N-44-S and C-33-A-0◦ have comparable
magnitude Pw and Ps near the middle of the canopy. Like the 45◦ driving-flow simulations
(Fig. 3d), N-44-S has significant DMF compared to TMF (Fig. 2d) at heights where Pw/Ps is
largest. C-33-A-0◦ is the outlier in that it has small DMF (Fig. 2d) compared to TMF despite
having large Pw. This shows that large Pw is not always related to largeDMF.Asdemonstrated
in Sect. 4.8.1, urban canopies often have large local dispersive velocity correlations, whose
sign may partially cancel upon horizontal averaging.

It has been demonstrated that wake production can have a large contribution to TMF,
particularly when the flow is oblique to the building faces. Investigation of TMF transport is
out of scope here.

4.2 Mixing Length at Canopy Top

The behaviour of 〈lm〉I at z/h = 1 can bemost easily understood in terms of comprehensively
averaged variables. Rearranging Eq. 8 for 〈lm,i 〉2C , and substituting into 〈lm,i 〉2I = 〈lm,i 〉2C/ε2

gives

〈lm,i 〉2I = −〈u′
iw

′〉Cε

/(∣∣∣∣∂〈ui 〉C
∂z

∣∣∣∣ ∂〈ui 〉C
∂z

)
. (11)

At z/h = 1 for a uniform-height canopy with perfectly flat roofs 〈ui 〉C and 〈u′
iw

′〉C are
continuous, and ε and ∂〈ui 〉C/∂z are finite but discontinuous. ∂〈ui 〉C/∂z increases at z/h = 1
due to the sudden contribution of shear along the roofs, as opposed to beneath the roofs where
there is no shear since ui is not defined within the buildings. The discontinuities in ε and
∂〈ui 〉C/∂z do not cancel, so that 〈lm,i 〉I is also discontinuous at z/h = 1. Parametrizing
〈lm(h)〉I for situations with flat-roofed buildings would be challenging. Rather than analyze
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Fig. 4 (a) Shear production of TMF, (b) wake production of TMF and (c) their ratio. The i, k = 1, 3 component
is plotted for the 0◦ driving flows, the i, k = 1, 3 and i, k = 2, 3 components are plotted for C-33-A-45◦, and
the average of the two components is plotted for B-25-A-45◦

Fig. 5 (a) and (b) correspond to 〈lm 〉I at heights 1.03h and 0.97h respectively, plotted against λp

〈lm〉I at h, we instead choose to focus on values just above and below. In practice roofs are
not perfectly flat and there is a variety of building heights, so that 〈lm(h)〉I might reasonably
be approximated as a continuous function.

Plotted in Fig. 5a and b is 〈lm〉I on the grid levels just above and below canopy top respec-
tively; 〈lm〉I is small near canopy top since there are large velocity gradients. 〈lm(1.03h)〉I
and 〈lm(0.97h)〉I are between 2 and 10 times smaller than 〈lm〉max

I . Also, 〈lm(1.03h)〉I is
approximately a factor of 2 smaller than 〈lm(0.97h)〉I , because 〈lm(1.03h)〉I has velocity
gradient contributions from just above the roofs where there is large shear.
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Fig. 6 κ calculated as the gradient of the linear regression between (a) 〈lm 〉I and z, and (b)
uτ,i

√
1 − d/H/(∂〈ui 〉I /∂z) and z, for z/h = 1.5–2.3, plotted against λp

Values of 〈lm(1.03h)〉I and 〈lm(0.97h)〉I tend to increase faster than linearly with decreas-
ing λp . It is expected that 〈lm〉 increases near canopy top with decreasing λp since there are
fewer buildings generating canopy-top shear. In the limit of an infinitely sparse canopy, flow
should resemble that over a smooth wall, so that 〈lm〉 ≈ κh, where κ is the von Kármán
coefficient. In the limit of a very dense canopy, flow should also resemble that over a smooth
wall, except displaced by h so that 〈lm〉 ≈ κ(z − h), and 〈lm(h)〉 ≈ 0. Although neither
limit is reached in the geometries examined here, it provides some explanation for the 〈lm〉
behaviour near canopy top.

4.3 Mixing Length Above Canopy Top

The dispersive momentum flux occurs due to spatial deviations in the mean flow, and where it
falls to zero can be used as a definition of the roughness sublayer height (Coceal et al. 2007c).
As seen in Figs. 2d and 3d, by z/h = 1.5 DMF is generally negligible (apart from N-44-A
and C-33-A-0◦ which is likely due to insufficient averaging time); 〈lm〉I tends towards an
approximately linear increase by z/h = 1.5, which is typical of inertial sublayer flow where
〈lm〉I ≈ κ(z−d). By inspecting 〈lm〉I , a linear portion was found to exist for z/h = 1.5−2.3
across simulations (not shown), and was identified as the inertial sublayer. Linear regression
of 〈lm〉I against z was performed in the inertial sublayer, where the gradient corresponds to
κ . The κ results are plotted in Fig. 6. The N-44-A and C-33-A-0◦ simulations are excluded
since they were not linear by z/h = 1.5, due to large DMF.

Parameter κ varies between 0.20 and 0.51, showing no clear relationship with canopy
geometry, and has many values far from the classical value of 0.41. Alternative inertial
sublayer height definitions were tested to investigate the sensitivity of κ . For 1.5−3.0h
where the top height was extended and 1.1–2.3h where the bottom height was extended, the
κ ranges were 0.18 to 0.41 and 0.22 to 0.51, respectively. Extending the top height resulted
in the lm,1 component of C-33-A-45◦ no longer being linear in the fitting portion, and its
linear regression gave reduced κ compared to its original height range value, reducing the
upper range of the κ values. Extending the bottom height had little effect on the range of κ

values.
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There are several studies which suggest that κ is not a universal constant in rough wall
flows, as discussed by Leonardi and Castro (2010). For example, Frenzen and Vogel (1995)
argue that roughness influences κ through the ratio of TKE production and dissipation in
the inertial sublayer. For DNS of flow over packed beds (Breugem et al. 2006) and LES of
a staggered array of cubes (Claus et al. 2012), values as low as 0.23 and ≈ 0.3 have been
observed, respectively, by logarithmic fitting to simulated velocity in the inertial sublayer.
However, to the authors’ knowledge this is the first set of results to demonstrate such a range
of κ values across a range of geometries in the urban canopy literature.

4.3.1 Scale Separation

Jiménez (2004) suggests that two conditions must be satisfied so that a region exists where
the only relevant turbulent length scale is the distance from the wall and the velocity profile is
truly logarithmic. First δ/h > 40–80, where δ is the boundary-layer depth, so that the flow is
far enough from the surface that inner-layer turbulence associated with roughness elements
does not interact with it. Second z/δ < 0.15, so that the flow is close enough to the wall to
not interact with the outer-layer turbulence of scale δ. The first condition may not be met in
urban areas under near-neutral atmospheric stability since the atmospheric boundary layer
over deeper urban canopies may not grow to δ/h > 40–80. This might explain some of the
large variability in relations for z0 and d which are often found using experimental datasets
(e.g., Kent et al. 2017).

In CFD half-channel flow investigations domain height H places a limit on δ. The first
condition is not met in the majority of the simulations presented here where H/h = 8. The
second condition becomes z/H < 0.15, which is also not met since the region defined earlier
as the inertial sublayer (z/h = 1.5–2.3) corresponds to z/H = 0.19–0.29 for H/h = 8.
However, N-35-S and C-33-A-45◦ have H/h = 12, so that the region defined earlier as
the inertial sublayer corresponds to z/H = 0.125–0.19. Roughly the lower half of the
region is then close enough to the wall for the outer-scale turbulence to not interact with
the flow according to Jiménez (2004). It is therefore interesting that N-35-S, the C-33-A-
45◦ x-component and the C-33-A-45◦ y-component have κ values of 0.38, 0.39 and 0.5
respectively, which are generally larger than the other values, and, with the exception of the
C-33-A-45◦ y-component, κ ≈ 0.4. This provides tentative evidence that H used in urban
canopy modelling can place limitations on δ, and lead to inadequate separation of the inner-
and outer-scales in the inertial sublayer resulting in modification of the turbulence.

That H might influence flow in the inertial sublayer does not affect the validity of results
presented within the canopy. Turbulence statistics within the canopy have been demonstrated
to converge with H in the DNS studies of Coceal et al. (2006) and Coceal et al. (2007a)
for H/h values of up to 6 and 8 respectively. Also, large-eddy simulations with H/h ≈ 8
have been shown to agree well with experiments (Xie and Castro 2006, 2009; Nazarian and
Kleissl 2016).

4.3.2 Influence of Vertical Turbulent Momentum Flux Variation

Replacing 〈lm〉I with κ(z − d) in Eq. 7 and assuming that momentum transport is down-
gradient, after rearranging one can obtain

∂〈ui 〉I
∂z

= τ
1/2
i

κ(z − d)
, (12)
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where τi = −〈u′
iw

′〉I . In the κ analysis presented in the previous section, the exact value
of τi derived from the CFD simulations was used in Eq. 12, following Coceal et al. (2006).
If instead τi is taken to be constant then Eq. 12 has the form of the MOST flux–gradient
relationship under neutral conditions. Its integral from z0 + d to z results in the standard
logarithmic law (Garratt 1994), where z0 is the roughness length.

When τi is taken to be constant it is not obvious what value it should take. In the CFD
simulations there is a body force applied uniformly throughout the fluid, which results in τi
decreasing linearly with height above the roughness sublayer. A linear fit would equal u2τ,i if
extrapolated to the surface, where uτ,i = uτ cos θ and θ is the angle between the x axis and
the driving-flow direction. Therefore, above the roughness sublayer τ

1/2
i = uτ,i

√
1 − z/H .

The effective ground experienced by the flow in the inertial sublayer is d . Assuming that the
TMF is constant in the surface layer (as is done in derivation of the logarithmic law), one
might then take τ

1/2
i = uτ,i

√
1 − d/H in the inertial sublayer (Leonardi and Castro 2010).

Taking this approach κ was estimated from the gradient of the linear regression between
uτ,i

√
1 − d/H/(∂〈ui 〉I /∂z) and z. The fits were similarly good in the region z/h = 1.5–2.3

across simulations when compared to the linear regressions in the previous analysis. The κ

values are plotted in Fig. 6b and vary widely between 0.27− 0.50. When performing fitting
analysis to obtain d and z0 in the inertial sublayer, neither the approach of taking the exact
value of τi or constant τi is advocated here as being correct. We instead note that in both
approaches a large range of κ are found, and taking a fixed value in any fitting analysis would
have a large influence on the values of d and z0 obtained. If the domain height used in CFD
simulations is increased this could have the twin benefits of improving scale separation and
reducing τi variation in the inertial sublayer.

4.4 General Characteristics of Mixing Length in Urban Canopies

The general features of the 〈lm〉I profiles for uniform-height, flat-roofed geometries are
summarized in a schematic in Fig. 7 and consist of: an increase from zero at the surface to
a maximum around the middle of the canopy, a decrease until canopy top (where there is a
discontinuity), and a rapid increase above z/h = 1 before transitioning to a linear increase
by approximately z/h = 1.5. The vertical extent of the arrow reflects the fact that the aligned
simulations have 〈lm〉max

I nearer canopy topwith increasing λp , and that 〈lm〉max
I can be below

the middle of the canopy for 45◦ driving-flow simulations; 〈lm〉max
I /h ≈ 0.3 is a reasonable

approximation apart from the 45◦ simulations which have much larger values.

4.5 Mixing-Length Characteristics of a Variable Height Building Array

Xie et al. (2008) conducted an LES of flow through λp = 0.25 staggered cuboids with equal
length and width, and varying heights. The horizontal layout was the same as that in Fig. 1b.
Within each repeating unit there were 16 cuboids (1×0.27h, 3×0.63h, 7×0.98h, 4×1.33h
and 1×1.68h). The dataset offers more realistic variability in ε(z) than uniform-height roofs.
The influence of variable building height on the flow and the general applicability of the 〈lm〉I
schematic in Fig. 7 to urban canopies is investigated.

Plotted in Fig. 8a, b are the ε(z) and 〈lm〉I profiles, respectively. Below h the momentum
mixing-length profile for the variable height array is similar to the schematic for the uniform-
building-height arrays (Fig. 7); 〈lm〉max

I occurs at z/h = 0.49, which is almost identical to
z/h = 0.50, the height at which 〈lm〉max

I occurs for N-25-S, a case with identical layout
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Fig. 7 Schematic showing the
main features of 〈lm 〉I across the
various uniform-height
geometries. The double ended
arrow indicates the range of
heights over which 〈lm 〉max

I
occurs for the different
geometries

but with uniform-height buildings; 〈lm〉max
I /h equals 0.41 which is 0.1 larger than the N-

25-S value. This could be due to contributions from larger-scale turbulence associated with
buildings taller than the mean height.

The variable height array 〈lm(h)〉I /h was equal to 0.14, and can be compared with the
N-25-S simulation at grid points just below and above z/h = 1, where 〈lm〉I /h = 0.09 and
0.05, respectively. Smaller values occur for N-25-S because there is a larger proportion of
roofs at h. Flow interacts with the roofs producing large double-averaged velocity gradients
(i.e., shear) and small 〈lm(h)〉I /h.

There are two less pronounced 〈lm〉I minima above z/h = 1 compared to the minima at
z/h = 1 in Fig. 8, and are a result of shear generated at the tops of the 1.33h and 1.68h
buildings. The peaks are less pronounced because there is a smaller number of height 1.33h
and 1.68h buildings than height h buildings.

〈lm〉I minima do not occur at the tops of the 0.27h and 0.63h buildings, despite them
occurring in similar proportion to the 1.33h and 1.68h buildings respectively. This is likely
because the buildings shorter than h are sheltered from the flow above, due to shear layers
shed from the taller buildings (Coceal et al. 2006). This would result in little time-mean
flow penetrating to their heights, reducing the shear production of turbulence associated
with the shorter building roofs. The turbulence would then become dominated by turbulence
originating from the taller buildings. The taller building eddies are likely larger scale than
the eddies generated by the roofs of the shorter buildings. This is because eddies generated at
roof level are small in scale (as demonstrated in Sect. 4.7), and the shorter buildings are in the
wakes of the taller buildings, and eddies in building wakes scale with building dimensions.

This explanation is consistent with Giometto et al. (2016) who conducted an LES of flow
through a portion of Basel’s urban canopy. They identified three modes in the building-height
probability distribution function (PDF)—two above h and one below h (see their Fig. 2).
The buildings with heights at the mode below h had little influence on the flow, and (upon
inspection of their Fig. 4) a double-averaged velocity gradient maximum cannot obviously
be identified at the mode below h.

Yoshida and Takemi (2018) conducted LES of variable-height, flat-roofed buildings,
with λp = 0.25 between the ground and the height of the short buildings, and λp = 0.0625
between the height of the short buildings and tall buildings. The ratio of the taller to the
shorter building heights was 2.7 in one simulation and 7.25 in another. The number of 〈lm〉
local maxima and minima within the canopy corresponded to the number of building heights
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Fig. 8 Panels (a) and (b) show the ε(z) and 〈lm 〉I profiles respectively, for the Xie et al. (2008) LES of
λp = 0.25 staggered cuboids with variable-height buildings. The black dotted line in (b) is obtained from a
linear fit to the solid black line between z/h = 3.0–4.0

(i.e., 2). Therefore, unlike in the Xie et al. (2008) and Giometto et al. (2016) variable-
building-height simulations, a 〈lm〉 minimum occurred below h at the height of the shortest
buildings. One possible explanation is that the tall buildings in the Yoshida and Takemi
(2018) simulations are sparse, so do not block flow from reaching the shorter buildings.

In contrast with the uniform-height, Xie et al. (2008) and Giometto et al. (2016) simula-
tions, the Yoshida and Takemi (2018) simulations had two rather than one double-averaged
velocity inflections. Again this is likely due to flow being able to penetrate to the heights of
the shorter buildings in the Yoshida and Takemi (2018) simulations, and a clear separation
of shear layers owing to the large difference in building heights.

As seen in Fig. 8, the transition to a linear 〈lm〉I profile above z/h = 1 is much slower
compared to the uniform-height buildings. The inertial sublayer was taken to be z/h =
3.0− 4.0 since 〈lm〉I was linear there, and a straight line was fitted in the region (see Fig. 8).
Compared to the inertial sublayer fit there was generally a small decrease in 〈lm〉I between
z/h = 1–3. This is likely due to shear layers shed from the tops of the taller buildings.

Based on the results presented here it is proposed that the characteristic 〈lm〉I shape in
Fig. 7 can be applied generally to canopy geometries with uni-modal building height PDFs.
A single 〈lm〉I minimum can then be expected at the mode canopy height, where maximum
shear is associated with the building roofs. The 〈lm〉I minimum is smaller with increasing
proportion of building roofs at the mode height. The transition to a linear 〈lm〉I profile above
the canopy is likely to occur for all canopy geometries, so long as the tallest buildings are
significantly smaller than the boundary-layer depth, thus giving adequate scale separation
of inner- and outer-layer turbulence for an inertial sublayer to develop. For urban canopies
with multi-modal building height PDFs the schematic would require extension. Whether
〈lm〉I minima exist at each mode depends on several factors such as whether there is a large
proportion of buildings at the mode, if the mode occurs below h, whether the taller buildings
are densely packed, and the height separation between modes.
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4.6 Importance of Accounting for Solid FractionVariation in Mixing-Length
Turbulence Closures

The importance of accounting for ε(z) in the first-ordermomentummixing-length closure and
the consequent effect on predicted 〈u〉 was investigated. The variable-building-height LES
of Xie et al. (2008) was used since of the datasets available, its ε(z) is most representative
of that in a real urban neighbourhood. The detailed analysis is in the Appendix.

It was found that if the solid fraction is not accounted for in the intrinsic mixing-length
closure, then errors in the predicted double-averaged velocity of up to 17% occur. If the solid
fraction is not accounted for in the comprehensive mixing-length closure, then errors in the
predicted double-averaged velocity do not occur, so long as ε is not included in Eq. 8 when
deriving 〈lm,i 〉C and solving the momentum equation.

4.7 Relationship Between Canopy-Top Shear Length Scale andMixing Length

Based on similarity arguments Finnigan et al. (2015) argued that whenmost of themomentum
is absorbed as drag by the canopy elements rather than by the ground, then there is only one
relevant length scale in the canopy (S(z)Cd(z))−1, which can be interpreted as a drag length
scale Lc (Belcher et al. 2003; Coceal and Belcher 2004). Here S(z) is the sectional obstacle
area density (obstacle area facing the wind divided by canopy air volume) and Cd(z) is the
sectional drag coefficient. In dense vegetation canopies the approximation that S(z) andCd(z)
are constant with height is also often made. This is consistent with the mixing-layer analogy,
which suggests that there is one dominant turbulent length scale in the canopy, determined
by the shear length scale Ls(h) associated with the canopy-top mixing-layer.

With decreasing vegetation canopy density there is increasing flow penetration into the
canopy, and there are length scales other than Ls(h) that become important. For example
those associated with eddies originating from shear near the surface (Watanabe and Kondo
1990), and penetration of inner layer eddies into the canopy and von Kármán street vortices
(Poggi et al. 2004).

It is investigated here to what extent turbulence in urban canopies is dominated bymixing-
layer eddies. If mixing-layer eddies are generatedwith length scale Ls(h) due to the inflection
in the double-average velocity profile at canopy top, and are dominant within urban canopies
so that only they control turbulent mixing, it would be expected that Ls(h) = α〈lm〉av across
canopy geometries. α is a constant and 〈lm〉av is the depth averaged value of 〈lm〉 within the
canopy.

The shear length scale is defined here as

Ls,i (z) = 〈ui 〉I
(

∂〈ui 〉I
∂z

+ 〈ui 〉I
ε

∂ε

∂z

)−1

. (13)

This is the same as the definition given by Raupach et al. (1996) but with the addition of the
second term in the brackets, which is included to account for the influence of solid fraction on
the intrinsic spatial average of the velocity gradient. The component label i has been retained
to allow the possibility of the shear being different in the x and y axes, while the shear of
vertical velocity is zero since 〈w〉I = 0.

Figure 9 shows Ls(h)/〈lm〉av
I plotted against λp . For the 0◦ aligned and staggered cube

geometries it can be seen that with decreasing λp the ratio Ls(h)/〈lm〉av
I increases faster than

linearly. α is not constant suggesting that mixing-layer eddies are not always the dominant
turbulence within urban canopies. Similar Ls/〈lm〉av

I versus λp relationships occurred when
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Fig. 9 Ls (h)/〈lm 〉av
I plotted against λp

Ls was evaluated at z/h = 0.94 and z/h = 1.06 (not shown), but Ls tended to be ∼ 50%
larger becausemaximumshear generally occurs at z/h = 1.Theonly outliers to the Ls/〈lm〉av

I
versus λp trend were the N-33-S and N-44-S datasets at z/h = 1.06. For them Ls/〈lm〉av

I
was 10% and 40% larger respectively than N-25-S, so increased with increasing λp .

Inspection of individual velocity profiles reveals that inflections in the velocity profile
occur at canopy top behind each roof, consistent with Letzel et al. (2008). The inflections are
much weaker ∼h downstream and extend little in the cross-stream. As suggested by Coceal
et al. (2007a), the urban canopy top shear layer is highly heterogeneous and velocity profile
inflections are local to individual buildings. As the canopy becomes sparser, fewer mixing-
layer eddies are produced, and more flow penetrates into the canopy, making turbulence
increasingly likely to be associated with other turbulence production mechanisms.

Ghisalberti (2009) argues that in ‘obstructed shear flows’,where part of a flow is obstructed
via a permeable medium, the mixing-layer eddies generated at the interface between the
permeable medium and unobstructed flow, cause environmental flows of this type to be
dynamically similar. Ghisalberti (2009) observed that across canopy types (e.g., sediment
beds, aquatic and terrestrial vegetation canopies, and coral reefs) the depth turbulence pen-
etrates into the canopy is proportional to Lc. However, urban canopies were found to be an
outlier with smaller penetration depth. In moderately dense and dense vegetation canopies
Ls/h ≈ 0.1 − 0.5 (Raupach et al. 1996). For moderately dense and dense urban canopies
(λp ≥ 0.25) presented here, Ls/h ranged between 0.06 and 0.16 (not shown). The mixing-
layer eddies are generally smaller and more localized to the obstacles than in vegetation
canopies, which explains why Ghisalberti (2009) found urban canopy turbulence to pene-
trate less deep into the canopy than in the other canopy types.

It can be seen from Fig. 9 that for the denser (λp ≥ 0.25) 0◦ staggered cube geometries
that Ls(h)/〈lm〉av

I varies less with λp . This suggests that mixing-layer eddies likely make a
large contribution to turbulent mixing in those geometries. As seen in Fig. 2a, b the velocity
and TMF respectively are small within the canopy for the dense staggered geometries, since
they have no unobstructed portions of the canopy. It is probable that most of the conversion
of time-mean flow into turbulence occurs at canopy top, and is transported into the canopy.

The 45◦ simulations have lower Ls(h)/〈lm〉av
I values compared to the 0◦ simulations with

the same λp (see Fig. 9). The 0◦ and 45◦ simulations with the same λp have similar Ls(h)/h
(not shown), but the 45◦ simulations have larger 〈lm〉av

I . Mixing-layer eddies generated by
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shear at the canopy top are therefore unlikely to be the cause of the differences in turbulence
characteristics within the canopy between the 0◦ and 45◦ simulations.

In summary, the relation Ls(h) = α〈lm〉av
I does not hold across geometries, and turbulence

is not dominated by mixing-layer eddies within the canopy, apart perhaps for the dense
(λp ≥ 0.25) 0◦ staggered geometries.

4.8 Dispersive Momentum-Flux Characteristics

As a preliminary step towards developing DMF parametrizations, the behaviour of the
three-dimensional DMF fields and horizontally-averaged profiles are investigated across
geometries.

From Figs. 2c and 3c, it is seen that generally the horizontally-averaged DMF magnitude
increases with height in the canopy until z/h = 0.7–0.95. The maximummagnitude of DMF
tends to occur lower in the canopy for the sparser geometries. For the 0◦ driving flows, DMF
is typically negative in the middle and just below the top of the canopy, and positive near the
surface (Fig. 2c). For the 45◦ driving flows, DMF is negative throughout the canopy, with
increasing magnitude from the surface until approximately z/h = 0.8 (Fig. 3c). These trends
are understood in terms of the three-dimensional DMF field in the following sections.

4.8.1 0◦ Driving Flows

Horizontal cross-sections of DMF through canopy geometry repeating units at z/h = 0.75
are shown in Fig. 10. Dispersive velocities are calculated using intrinsic averages to simplify
interpretation as explained in Sect. 3.1. Inspecting the 0◦ simulations in Fig. 10a, c, d, e reveals
that DMF is generally negative along the leeward face of the buildings (ũ < 0, w̃ > 0) and
positive along the windward face (ũ < 0, w̃ < 0), in agreement with Coceal et al. (2007c)
and Yoshida and Takemi (2018). For λp < 0.44 the negative fluxes on the leeward side have
significantly larger streamwise extent than the positive fluxes on the windward side (Fig. 10a,
d), and therefore dominate the spatial average flux. This flow pattern exists in the middle and
top portions of the canopy for these cases, and it explains why the horizontal average DMF
is generally negative there in Fig. 2c.

For λp = 0.44 (Fig. 10c, e) the streamwise extent of the negative fluxes on the leeward side
is much reduced, since recirculations in wakes are very limited by the downstream building
separation. In Fig. 10c it can be seen that for N-44-A the extent of negative fluxes from the
leeward wall is still slightly larger than the positive fluxes at the windward wall. However, the
magnitude of the positive fluxes is larger, and positive fluxes dominate the spatial average (as
seen in Fig. 2c). From Fig. 10e it can be seen that for N-44-S the positive and negative fluxes
occupy similar fractions of the canopy, with comparable magnitude, so that the horizontal
average DMF is small (as seen in Fig. 2c).

Figure 2d shows the ratio of DMF to TMF for the 0◦ simulations. The λp = 0.0625–0.35
geometries have ratio between 0.2–0.6 for z/h = 0.4–0.9. These values are consistent with
other studies (Kanda et al. 2004; Xie et al. 2008; Castro 2017). DMF for λp ≤ 0.25 tends to
be convex within the canopy but TMF across all λp tends to be concave. The ratio is generally
largest at z/h ≈ 0.5. Near the surface the ratio is negative because DMF is positive there.
The regions of negative flux in Fig. 10a, d at z/h = 0.75 are smaller near the surface, and
the large positive fluxes confined close to the windward wall dominate the spatial average.

The ratio has different behaviour when λp = 0.44. The N-44-A ratio is negative below
z/h = 0.85, with a minimum value of −0.72 at z/h = 0.3. The N-44-S ratio is complicated,
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Fig. 10 Panels (a), (c), (d) and (e) show DMF ũw̃/u2τ cross-sections at z/h = 0.75 for B-25-A-0◦, N-44-A,
N-25-S andN-44-S respectively. Panel (b) shows a (ũw̃+ ṽw̃)/u2τ cross-section at z/h = 0.75 for B-25-A-45◦

being generally negative below z/h = 0.55 but with both very large positive and negative
values in the region due to small values of TMF.

That the ratio ofDMF toTMF is far from constant across the range of geometries presented
here is further evidence that they are not governed by the same processes. DMF is related
to the correlation of u and w (since 〈u w〉 = 〈ũw̃〉), and so requires knowledge of the three-
dimensional time-averaged flow field.

4.8.2 45◦ Driving Flows

Compared to the 0◦ simulation DMF cross-sections in Fig. 10, B-25-A-45◦ in Fig. 10b has
distinctly different characteristics, with negative fluxes dominating the cross-section. There
are strong negative fluxes in the wakes of the buildings as in the 0◦ driving flows, but at the
windward walls (x/h = 2, y/h = 0 − 1 and x/h = 0 − 1, y/h = 2) there are no strong
positive fluxes. There are two separate streams either side of each building where flow is
diverted around them as also noted by Claus et al. (2012). At the windward walls they have
downward motion (w̃ < 0), like the flow at the windward walls in the 0◦ driving flows. The
flow streams have large positive horizontal velocity at the windward walls (ũ, ṽ > 0) so
correlation with w̃ < 0 gives negative fluxes, unlike the 0◦ driving flows where ũ < 0 at
the windward wall so that there are positive fluxes. This flow pattern extends throughout the
canopy and explains why the B-25-A-45◦ horizontally-averaged DMF is positive within the
canopy in Fig. 3c.

The 45◦ datasets have particularly large ratios in the lower canopy with values larger than
1 for 0.05 < z/h < 0.5 (Fig. 3d). Unlike in the 0◦ driving flows where DMF tends to be
negative near the surface, in the 45◦ driving flows it is positive. The ratio is maximum at
z/h ≈ 0.15, and has values 2.9, 129.1 and 2.3 for B-25-A-45◦, C-33-A-45◦ x-component
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and C-33-A-45◦ y-component respectively. The ratio of 129.1 is off the axis limit and the
particularly large value is due to very small TMF. It has already been shown by Castro et al.
(2017) using the C-33-A-45◦ dataset that DMF is a significant and at times dominant fraction
of the total momentum flux. It is demonstrated for the first time here in the B-25-A-45◦ case,
suggesting that this might be a general result for 45◦ driving flows.

Using LES, Giometto et al. (2016) found for a portion of Basel’s urban canopy (λp = 0.5
near the surface), with two prevailing wind directions, that TMF and DMF are approximately
equal up to h. This is consistent with our finding that DMF can be much larger when flow
is oblique to building faces. They found the DMF to increase approximately linearly with
height up to h, above which it starts to decrease, whereas the TMF peaks above h. The TMF
profiles were slightly convex and reasonably similar in shape to the DMF profiles.

It may be expected that the magnitude of DMF increases with height (if λp(z) is approx-
imately constant) since |u| tends to increase with height. It is less obvious that DMF might
increase approximately linearly with height for realistic urban canopy geometries. It is pos-
sible at high λp in realistic geometries where buildings have varying orientations to the flow,
that there is a mixture of convex and concave shaped DMF in different regions of the canopy.
It was found here that when λp ≥ 0.25, the 0◦ and 45◦ driving flows produce concave and
convex profiles, respectively. Upon spatial averaging this could give rise to approximately lin-
early increasing spatially-averaged DMF with height. More CFD and experimental evidence
of realistic urban geometries is required to see if this is the case.

5 Conclusions

5.1 Summary

The influence of different surface morphologies on urban canopy turbulence characteristics
was investigated for numerous urban canopy LES and DNS datasets covering a range of
idealized geometries (λp = 0.0625 to 0.44, cubes and cuboids, uniform and variable building
heights, driving flows at 0◦ and 45◦ to the building faces, and aligned and staggered arrays).
A first-order momentum mixing-length turbulence closure was formulated and momentum
mixing-length profiles examined across geometries, with a view towards developing a new
urban-canopy turbulencemodel. The dispersive momentum-flux profiles were calculated and
interpreted in terms of the three-dimensional flow field.

The intrinsic average of vertical gradients in velocity gives rise to a term that accounts
for changes in λp with height. Without it there are large discontinuities in the gradient
whenever there are step changes in λp , which cause spikes in the momentum mixing length.
For a variable-height building geometry it was shown that excluding the extra term in the
momentum mixing-length closure results in overestimation of predicted velocity by up to
17% near the top of the canopy. For denser urban canopies (λp > 0.25) the error is expected
to be larger. The intrinsic averaging approach is used commonly in urban canopy models
(Martilli and Santiago 2007), and when K -theory turbulence closures do not account for the
extra term large errors can be expected, since they involve horizontal averaging of velocity
gradients.

It was found that the shear length scale at the canopy top does not varywith depth-averaged
momentum mixing length within the canopy in a systematic way. This suggests that the
mixing-layer analogy (Raupach et al. 1996) does not apply to turbulence in urban canopies,
unlike in vegetation canopies, since it is not dominated by one length scale associated with
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mixing-layer eddies generated at canopy top. Shear-generated eddies at the top of urban
canopies are local to the buildings (Coceal et al. 2007a), and do not penetrate as far down
into the canopy as in vegetation canopies. Flow velocity can be considerable near the surface
in unobstructed regions of urban canopies so that significant shear can be generated there.
The momentum mixing length might be better interpreted as a combination of two length
scales—the distance from the ground and from canopy top, both of which act to block eddies
(Coceal et al. 2006).

Themomentummixing length demonstrated common characteristics across urban canopy
geometries. For uniform-height, flat-roofed obstacles it increases from zero at the surface to
a maximum roughly in the middle of the canopy, decreases until canopy top and increases
rapidly above z/h = 1, before transitioning to a linear increase by approximately z/h = 1.5.
The 0◦ driving flows typically have a maximum momentum mixing length in the canopy of
≈ 0.3h.

There were some outliers to the trend, specifically the λp = 0.44 staggered geometry and
the 45◦ driving flows as discussed in Sect. 4.1.Within the canopy these tended to have similar
order magnitude wake production compared to shear production of turbulent momentum flux
(away from the ground and canopy top), and larger magnitude ratios of dipersive to turbulent
momentum flux than the other simulations. Wake production and dispersive momentum flux
are both associated with building-scale spatial fluctuations in the flow, and are not directly
related to the vertical gradient of the double-averaged velocity, as assumed by the mixing-
length parametrization.

Using a variable-building-height dataset, it was demonstrated that the momentummixing-
length profile shape and magnitude below mean building height is similar to that with
uniform-height geometries. Above mean building height, mixing length increases approx-
imately linearly with height, but is slightly reduced from what would be expected in a
logarithmic region, due to multiple shear layers associated with the tops of the buildings.
A minimum in the mixing-length profile occurs at the mean building height but is larger
compared to uniform-height geometries.

Von Kármán’s parameter (constant) κ was calculated from the gradient of linear regres-
sions fitted to momentum mixing-length profiles in the inertial sublayer. It was found that κ
varies between 0.20 and 0.51, and there is no clear relationship between canopy geometry
and κ . The simulations with larger domain heights tended to have larger κ . Whether the ratio
of roughness height to boundary-layer depth is insufficient for adequate scale separation in
the logarithmic region, as suggested by Jiménez (2004), requires further investigation.

Dispersive momentum-flux profiles for the 0◦ driving flow datasets were in line with those
in the literature (Kanda et al. 2004; Xie et al. 2008; Castro 2017), with dispersive to turbulent
momentum-flux ratios of 0.2–0.6 for z/h = 0.4–0.9 in the λp = 0.0625–0.35 simulations.
The 45◦ datasets have larger dispersive momentum flux, and ratios to turbulent momentum
flux that exceed 1 for 0.05 < z/h < 0.5. As ratios of approximately unity have also been
found for realistic geometries (Giometto et al. 2016), dispersive momentum flux in oblique
flows may be more important than previously thought.

5.2 Implications for Parametrization

Many urban canopy models assume turbulent length scales that are constant up to mean
canopy height and linearly increasing above (Hamdi andMasson 2008; Santiago andMartilli
2010; Nazarian et al. 2020). In NWP the main role of the urban canopy model is to provide
a boundary condition for the flow above. The use of a constant turbulent length scale is not
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necessarily a poor approximation, if its value is determined so that the correct fluxes are
provided to the levels above the canopy. However, if vertical profiles of velocity and scalars
are of interest within the canopy, then using a turbulent length scale that varies with height in
the correct way is important. TMF is proportional to 〈lm〉2 in first-order momentum mixing-
length closures and proportional to the turbulent length scale in commonly used k − l TKE
closures (Martilli et al. 2002; Schoetter et al. 2020), so the turbulent length scale (of which
momentum mixing length is an example) is an important parameter.

Models that use a constant turbulent length scale often do not enforce the no-slip con-
dition at the surface, so velocity gradients at the surface are very small. Canopy dispersion
parametrizations based on the double-averaging approach involve velocity gradients, so it is
necessary to correctly predict velocity for use in determining the vertical scalar distribution.
This is especially the case near the surface where there are strong velocity gradients collo-
cated with various scalar sources (e.g., pollution emissions, and anthropogenic and sensible
heat).

Based on sensitivity tests (not shown), changing the turbulent length scale alone in urban
canopy models does not always improve the predicted velocity profile, if the drag term is
not treated properly. It is well known that the Cd(z) tends to be larger near the surface than
close to the tops of buildings (Macdonald 2000; Cheng and Castro 2002; Coceal et al. 2006;
Santiago et al. 2008; Leonardi and Castro 2010), so it follows that the drag length scale Lc

is variable in urban canopies. Future multi-layer canopy models will likely need to account
for both turbulent length scales and drag length scales that vary with height in the canopy.

It was found that the 45◦ driving flow simulations have large turbulent momentum flux
despite having small double-average velocity gradient. Turbulent transport was proposed as
a possible explanation. When turbulent transport of turbulent momentum flux is important
then first-order closures are insufficient. A possible pragmatic approach to a higher-order
closure is to add an extra term to the first-order momentum mixing-length closure, so that
〈u′w′〉 = −〈lm〉2 |〈∂u/∂z〉| 〈∂u/∂z〉 + Nl , where Nl represents turbulent transport (i.e.,
the non-local turbulence). Such an extension to the first-order momentum mixing-length
approach has already been formulated by Wang (2014). This approach could also offer a
method of parametrizing buoyancy effects which drive non-local momentum transport, in a
way analogous to some convective-boundary-layer schemes (e.g., Lock et al. 2000), whilst
maintaining first-order momentum mixing-length closure of mechanical turbulence.

It was argued in Sect. 4.8 that dispersive and turbulent transport are not governed by the
same processes. Rather than representing dispersive momentum flux as part of the turbulence
closure it could be treated separately. For example, if it is foundmore generally that dispersive
momentum flux is an approximately linearly increasing function across different realistic
geometries, then it could be taken as a function that is scaled with velocity and building
morphology parameters such as λp . Recirculations in building wakes cause the majority of
dispersivemomentumflux since they arewhere largemagnitude ũ and w̃ occur.Recirculations
are likely predominantly driven by the flow at canopy top as in street canyons, so that 〈u(h)〉
is the relevant velocity scale.
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Appendix: Importance of Accounting for Solid Fraction Variation in
Mixing-Length Turbulence Closures

The importance of accounting for ε(z) in the first-order momentum mixing-length closure
and the consequent effect on predicted 〈u〉 is investigated. The variable-building-height LES
of Xie et al. (2008) is used.

Impact of Accounting for Solid Fraction Variation onMixing Length

Plotted in solid black and dashed blue in Fig. 11a are 〈lm〉I calculated with and without the ε

terms in Eq. 7 respectively. If the ε terms are excluded spikes occur at grid levels where there
is a discontinuity in ε(z) [see Fig. 8a for the ε(z) profile], due to ∂〈u〉I /∂z discontinuities.
At ε(z) discontinuities, 〈u〉I has discontinuities of size

〈u(z + �z)〉I − 〈u(z − �z)〉I = 〈u(z + �z)〉C
ε(z + �z)

− 〈u(z − �z)〉C
ε(z − �z)

≈ 〈u(z)〉C
(

ε(z − �z) − ε(z + �z)

ε(z + �z)ε(z − �z)

)
,

(14)

where the approximation is in the limit of�z → 0, and uses the fact that 〈u〉C is a continuous
function. When discretized, ∂〈u〉I /∂z at ε(z) discontinuities tends to be reduced compared
to values above and below ε(z) discontinuities, as seen from inspecting the intrinsic average
velocity profile (solid black line in Fig. 11c), most notably at z/h = 1 where ε(z) changes
most. ∂〈u〉I /∂z is reduced at ε(z) increases, because 〈u〉I is small at the grid level above,
due to low velocity contributions from flow influenced by the no-slip condition along the
roofs. At z/h = 1 where there is largest change in ε(z), the velocity gradient is reduced to
the point it turns negative, such that 〈lm〉I is not well defined if the ε term is not included in
its calculation (as seen from the absence of the dashed blue curve at z/h = 1 in Fig. 11a).

If taking the approach of not accounting for ε(z) variation, it would not be possible to
incorporate the spikes into a general 〈lm〉I parametrization. The best one could do is to ignore
the spikes and represent the smooth part of the 〈lm〉I behaviour. Such an approach might be
achieved by linearly interpolating between the points either side of the spikes and this is
shown as a dotted red curve in Fig. 11a.

Plotted in solid and dashed grey in Fig. 11b are 〈lm〉C calculated with andwithout account-
ing for ε(z) variation in Eq. 8 respectively. The two profiles are identical up to a factor of
ε(z)3/2. Neither profile exhibits large spikes since 〈u〉C is a continuous function and has small
〈∂u/∂z〉C discontinuities. It is noted that 〈lm〉C = ε(z)〈lm〉I (according to 〈φ〉C = ε〈φ〉I
as explained in Sect. 3.1). This is consistent with inspection of the 〈lm〉I and 〈lm〉C curves
plotted in Fig. 11a, b when ε(z) variation is accounted for in both their calculations.
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Fig. 11 (a) Profiles of 〈lm 〉I calculated according to Eq. 7: including the ε term (black), excluding the ε term
(dashed blue), and excluding the ε term followed by removing the spikes and interpolating (dotted red). (b)
〈lm 〉C calculated according to Eq. 8: including (solid) and excluding (dashed) the ε3 factor. (c) Solution to
Eq. 15 using the full 〈lm 〉I from (a) (solid black), using the interpolated 〈lm 〉I from (a) and excluding the ε

term (red dotted), alongside the solution to Eq. 16 excluding the ε3 factor and using the dashed grey 〈lm 〉C
from (b) (dotted grey). The solution to Eq. 16 including the ε3 factor and using the solid grey 〈lm 〉C from (b)
is plotted in (c) and is identical to the dotted grey curve. (d) The ratio of the dotted red and solid black profiles
from (c)

Impact of Accounting for Solid Fraction Variation on Predicted Velocity

Herewe investigate the impact on predicted velocity by accounting for solid fraction variation
in the momentum mixing-length closure formulation. To do so, TMF and 〈lm〉 are taken
to be known from the LES, and the corresponding double-averaged velocity is solved by
discretising the momentum mixing-length closure.

A simple discretization of the intrinsic averaged closure (Eq. 7) is given by

u j+1 = u j + �z

(±(u′w′) j+1/2

lm, j+1/2

)1/2

− u j (ε j+1 − ε j )

ε j+1/2
, (15)
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where time and spatial averaging symbols, and spatial indices i have been dropped for brevity.
j labels the LES grid levels and +1/2 indicates their midpoints, with linear interpolation
of values at the adjacent levels where necessary. The ± is to be taken as negative (positive)
when the value within the modulus in Eq. 7 is positive (negative). Discretization of the
comprehensive averaged closure (Eq. 8) is given by

u j+1 = u j + �z

(±(u′w′) j+1/2ε
3
j+1/2

lm, j+1/2

)1/2

, (16)

where ± is negative (positive) when the value within the modulus in Eq. 8 is positive (nega-
tive).

The solution to Eq. 15 using 〈lm〉I calculated including the ε term is plotted as solid black
in Fig. 11c. As a simple matter of consistency, this solution reproduces the true 〈u〉I , since
this was used along with 〈u′w′〉I to derive 〈lm〉I . Plotted as dotted red in Fig. 11c is the
solution using 〈lm〉I calculated when the ε(z) term is excluded and spikes are interpolated.
The second term on the r.h.s. of Eq. 15 was dropped in the calculation for consistency with
that approach. Inspecting the ratio of 〈u〉I values when the ε(z) term is excluded and included
(Fig. 11d), reveals that excluding the ε(z) term results in velocity overestimation of up to
17% just above h. Each time there is an ε(z) discontinuity the percentage error increases,
and between discontinuities the percentage error decreases, since the magnitude of the error
remains constant with increasing height, but the magnitude of the two velocities increases.

So long as the ε(z)3 factor is dropped in Eq. 16 as well as in the 〈lm〉C calculation, then
the factor cancels, and the solution is the same as when the ε(z)3 factor is included. Multi-
layer canopy model turbulence closures based on comprehensive averaging therefore do
not encounter errors in predicted velocity due to incorrect application of the comprehensive
spatial-averaging theorem to velocity gradients. The two solutions are plotted as one dotted
grey curve in Fig. 11c.
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