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Data-driven modeling for wave-propagation

Tristan van Leeuwen, Peter Jan van Leeuwen and Sergiy Zhuk

Abstract Many imaging modalities, such as ultrasound and radar, rely heavily on
the ability to accurately model wave propagation. In most applications, the response
of an object to an incident wave is recorded and the goal is to characterize the object
in terms of its physical parameters (e.g., density or soundspeed). We can cast this
as a joint parameter and state estimation problem. In particular, we consider the
case where the inner problem of estimating the state is a weakly constrained data-
assimilation problem. In this paper, we discuss a numerical method for solving this
variational problem.

1 Introduction

Many imaging modalities, such as ultrasound, geophysical exploration, and radar,
rely heavily on the ability to accuratelymodelwave propagation. Inmost applications,
the response of an object to an incidentwave is recorded and the goal is to characterize
the object in terms of its physical parameters (e.g., density or soundspeed). We can
capture this setup in terms of a process and measurement model

L(c)u = q, (1)
d = Pu, (2)

where u denotes the wavefield, L(c) = ∂2
t − c2∇2 represents the wave equation

depending on the physical parameters, c, and P is the sampling operator that models

Tristan van Leeuwen
Utrecht University, Utrecht, the Netherlands e-mail: t.vanleeuwen@uu.nl

Peter Jan van Leeuwen
Colorado State University, Colorado, U.S.A. e-mail: Peter.vanLeeuwen@colostate.edu

Sergiy Zhuk
IBM Research, Dublin, Ireland

1



2 Tristan van Leeuwen, Peter Jan van Leeuwen and Sergiy Zhuk

the measurement process. In particular, consider the case where we are given a
finite number of samples of the state. We are ultimately interested in estimating the
parameters c from the measurements d. There are different ways to go about this;

PDE-constrained optimization: Eliminate the process model and set up a non-
linear data-fitting problem to match the solution of (1) to the data [12].

Equation-error approach: Estimate the state directly from the measurements by
solving (2) and subsequently solve for c from (1) [8, 2].

Joint parameter and state estimation: Find the parameter and state that satisfy
both (1) and (2) approximately [13].

The former two can be thought of as limiting cases of the latter where the state is
estimated either completely determined by the process model or determined solely
from the data. The joint approach gives rise to a data-driven modelling problem,
where one aims to estimate a state that satisfies both the data and the physics to some
extent. We can formally express this as a variational problem

min
u
‖Pu − d‖2 + ρ‖L(c)u − q‖2, (3)

where ρ is a parameter that controls the trade-off between the two terms. How well
we are able to approximate the true state by solving (3) depends on how many
measurements are available, the observability of the system, how close c is to the
true parameter and requires an appropriate choice of ρ. We will not address this
issue here and focus solely on solving (3) for given c and ρ.

A straightforward approach to solving (3) would be to derive the Euler-Lagrange
equations, and solve the resulting PDE numerically. Alternatively, one could dis-
cretize the wave-equation first and set up a large sparse system of equations for the
state [3, 7, 9, 4]. In both cases, the dimensionality of the problem is governed by the
numerical discretization. In this paper, we cast the problem in a reproducing kernel
Hilbert space, allowing us to express the solution of (3) as a finite linear combination
of kernel functions [11, 5]. This leads to a system of linear equations involving a
kernel matrix. The dimension of this system is given by the number of measurements
and is thus independent of the underlying numerical discretisation of the PDE. We
discuss a preconditioned iterative method for solving this system. Finally, we present
some numerical examples and conclude the paper.

2 Theory

We consider a scalar wave-equation in [0,T] × Rd of the form Lu = q with L(c) =
∂2
t − c2∇2 and initial conditions u(0, x) = ∂tu(0, x) = 0. Without elaborating on the
details, we assume that this problem is well-posed for all parameters c of interest
and that the solution is given by u = Gq with

Gq(t, x) =
∫ t

0

∫
Rd

g(t − s, x, y)q(s, y)dyds.
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The corresponding adjoint problem L∗v = r (with u(T, x) = ∂tu(T, x) = 0) has
solution v = G∗r

G∗r(t, x) =
∫ T

t

∫
Rd

g(s − t, x, y)r(s, y)dyds.

For further details regarding the well-posedness of variable-coefficient wave-
equations we refer to [1].

Themeasurements are obtained by sampling the state at given locations {(ti, xi)}Mi=1:

Pu = {u(ti, xi)}Mi=1.

We introduce a Hilbert space U with inner product:

〈u, v〉U = 〈Lu,Lv〉L2(Rd+1).

We can think of this as the space of solutions of the wave equation with square
integrable source term. The spaceU is aReproducing Kernel Hilbert Space (RKHS)
[6]. A special property of an RKHS is that point-evaluation is a bounded linear
functional with Riesz representation kt ,x ∈ U so that 〈kt ,x,u〉U = u(t, x). The
reproducing kernel of U is given by k(t, x, t ′, x ′) = 〈kt ,x, kt′,x′〉U . It is the Greens
function of L∗L and is thus given by

k(t, x, t ′, x ′) =
∫ T

0

∫
Rd

g(t − s, x, y)g(t ′ − s, y, x ′)dyds.

We can think of k as a spline that is taylored to represent solutions of the wave
equation.

The aim is to solve a variational problem of the form

min
u∈U

M∑
1=1
(u(ti, xi) − di)2 + ρ‖Lu − q‖2

L2(Rd+1)
. (4)

By splitting the solution as u = Gq+w and introducing r = d −Gq, we can re-write
this as

min
v∈U

M∑
1=1
(w(ti, xi) − ri)2 + ρ‖w‖U . (5)

Utilizing the Representer Theorem [10], we know that the solution to this variational
problem has the following form

w(t, x) =
M∑
i=1

wik(ti, xi, t, x).

We can use this finite-dimensional representation of the solution to express (4) as a
finite-dimensional least-squares problem
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min
w∈RM

‖Kw − r‖22 + ρw
TKw, (6)

where K is the kernel matrix with elements ki j = k(ti, xi, ti, xj). The kernel matrix
is guaranteed to be positive definite, ensuring a unique solution given by

ŵ = (K + ρI)−1 r.

Example: constant coefficients

With c(x) = 1we can express all quantities in the spatial Fourier domain. The Greens
function is then given by

ĝ(t, ξ) =
sin((t − s)|ξ |)

|ξ |
,

giving

k̂(t, t ′, ξ) = |ξ |−2
∫ min(t ,t′)

0
sin((t − s)|ξ |) sin((t ′ − s)|ξ |)ds,

which yields

k̂(t, t ′, ξ) =

{
t |ξ |−2 cos((t − t ′)|ξ |) − |ξ |−3 cos(t ′ |ξ |) sin(t |ξ |) t ≤ t ′

t ′ |ξ |−2 cos((t − t ′)|ξ |) − |ξ |−3 cos(t |ξ |) sin(t ′ |ξ |) t > t ′.
(7)

To get some insight into the properties of the continous kernel operator defined by

Kû(t) =
∫ ∞

0
k̂(t, t ′, ξ)û(t ′)dt ′,

we take û(t) = sin(ωt) and find that this is an eigenfunction with eigenvalue λ =
(ω2 − |ξ |2)−2. The contiuous operator can thus have an arbitraly large norm due to
modes with ω ≈ ±‖ξ‖. The corresponding kernel matrix, K , can thus be extremely
ill-conditioned.

3 Algorithm

We discretize all quantities on a regular grid and introduce the notation uk = (u(k ·
∆t, x1),u(k ·∆t, x2), . . . ,u(k ·∆t, xnx )). A second order finite-difference discretization
of L on [0,T] × [−D,D] leads to forward and adjoint systems of the form Lu = q,
L ′v = r with u = (u1, . . . ,unt ), q = (q0,q1, . . . ,qnt−1) and
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L = (∆t)−2
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where S = −2I − (∆t)2 A and A ∈ Rnx×nx is a second order central finite-difference
discratization of c2∇2. Note that L ′ , LT . The sampling operator is discretized using
piecewise linear interpolation, yielding a matrix P ∈ RM×N . Using adjoint interpo-
lation is an appropriate way to represent the point source [14]. The combination of a
second-order finite-difference approximation of L and linear interpolation ensures
an overal second order approximation of the elements of K .

Storing the full matrix K = P(L ′L)−1PT may not be very attractive, but we can
compute matrix-vector products with K by solving one forward and one adjoint
problem;

Kw = Pu,

with Lu = v and L ′v = PTw. Since the matrix is symmetric we can apply CG to
solve the system (K + ρI)w = r. As this system becomes inceasingly ill-conditioned
as ρ decreases, preconditioning is of paramount importance. Due to the specific form
of K , we propose a preconditioner of the form K−1 ≈ M = QL ′LQT , where Q is
chosen so that QTPu ≈ u for solutions of Lu = q. When P samples the solution on
a grid we can take Q to be a high-order interpolation operator (e.g. cubic splines).

4 Numerical results

4.1 Harmonic oscillator

For a single spatial Fourier mode, the kernel is given by (7). Figure 1 (a) shows an
example of k̂(t, t ′) for ξ = 20, t ′ = 1

3 and t ′ = 1
2 . We take samples on a regular

grid with m = 20 samples in (0,1). The spectum of the corresponding kernel matrix
is shown in figure 1 (b). Also shown is the Fourier approximation of the spectrum.
The kink in the spectrum is due to the singularity in the spectrum of the continous
operator at ω = ‖ξ‖. Figure 1 (c) shows the absolute error as a function of ∆t when
using the numerical approximation described above. The effect of the preconditioner
is shown in figure 2. We see that when using 1D spline interpolation, most of the
eigenvalues of MK are clustered around one.
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Fig. 1 (a) kernel k̂(t , t′) for ξ = 20, t′ = 1
3 and t′ = 1

2 . (b) Spectrum of K (solid) and its
Fourier-approximation (dashed). (c) absolute error as a function of ∆t
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Fig. 2 (a) Illustration of the action of the interpolation operator Q. The solution to Lu = q with
random source term is depicted, as well as its interpolated result PTPu andQTPu. (b) Eigenvalues
of K and MK . The preconditioner nicely clusters most of the eigenvalues.

4.2 1D wave-equation

Wegenerate data by solving the non-constant coefficient wave equation and sampling
the solution on a regular grid. We then solve the variational problem for a constant
reference soundspeed. The grid and velocity profiles are depicted in figure 3. The
true state, reference state and reconstructed state for ρ = 10−4‖K ‖2 are depicted in
figure 4. As preconditioner for small ρ we use (K + ρI)−1 ≈ K−1 ≈ M while for
large ρ we use (K + ρI)−1 ≈ ρ−1I − ρ−2K with M = QL ′LQT and Q is 2D spline
interpolation. The convergence history of CG, with and without preconditioner, for
various values of ρ is shown in figure 5.
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Fig. 3 Left: Grid used to define the sampling operator. Right: velocity profiles used to generate
data and estimate state.
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Fig. 4 True, reference and estimated states for ρ = 10−4.
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Fig. 5 Convergence of CGwhen solving the system for various values of ρwith (solid) and without
(dashed) preconconditioner.

5 Conclusion and discussion

We presented a numerical method for solving a variational data-assimilation prob-
lem involving the wave equation. By casting the problem in a Reproducing Kernel
Hilbert Space, we derived a finite-dimensional system of equations involving a kernel
matrix. Computing the action of this kernel on a given vector involves numerically
solving a forward and adjoint wave equation and we described a non-self-adjoint
second-order finite difference scheme for the wave equation to approximate the ker-
nel. Using a simple Fourier analysis we show that the kernel matrix can be arbitraly
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ill-conditioned. A simple preconditioner was proposed that appears to perform rea-
sonably well in practice. The numerical examples presented in this paper involved a
1D wave equation and a relatively dense measurement grid. While the methodology
described here can be easily extended to higher dimensions, the simple precon-
ditioner will probably not perform as well on courser measurement grids. Further
analysis of the kernel for non-constant coefficients may shed some light on this issue.
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