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Abstract 

The long-term increasing trend of annual mean temperature is only one aspect of recent 

climate change. Other changes in climate, seen in within-year weather patterns relevant to 

crop production, have also occurred since the late-19th Century. Multivariate analysis 

combining Prinipal Components Analysis and K-means clustering applied to temporal 

meteorological datasets (monthly summaries of rainfall, temperature and sunlight duration at 

Rothamsted Research, UK, between 1892 and 2016) identified ten distinct clusters of years, 

each with different annual weather patterns. The frequency of occurrence of the years within 

each cluster altered considerably during this period, with the late 20th and early 21st Century 

distinctly different to earlier in the 20th Century, providing clear evidence of climate change 

with regard to the whole weather profile rather than just warming alone. The most-frequently 

represented cluster of the 21st Century to date had warmer temperatures with more intense 

rainfall but a dry June, compared to all other clusters. Half of the clusters identified were not 

represented in the most-recent 25-year period. Analysis of the total biomass yield of winter 

wheat (Triticum aestivum L.), spring barley (Hordeum vulgare L.), and grassland amongst 

the different weather clusters showed that years in clusters typical of the 20th Century 

climate provided greater off-take than those from the early-21st Century, but this impact was 

less for the pasture than for the two cereal crops implying herbage production was the more 

resilient to the changing climate at this site. 

 

Keywords: Climate change; Wheat (Triticum aestivum L.); Barley (Hordeum vulgare L.); 

pasture; Multivariate analysis 
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1. Introduction 

Climate change, as reflected in increases in mean annual temperature, is highly likely to 

exceed 1.5°C by 2081–2100 relative to 1850–1900, and possibly 2.0°C, with more frequent 

hot, and fewer cold, temperature extremes over most land areas globally and greater 

precipitation likely at higher latitudes (IPCC, 2014). But considerable global warming has 

already occurred. In 2016, the average global temperature was 1.43°C above the 20th 

Century average (NOAA, 2017). Warming is expected to be greater at higher latitudes 

(IPCC, 2014), and the changes recorded at different sites do vary. In a study of diverse 

vegetable-growing sites globally over 37 years or more, 24 sites showed a warming trend, 

five showed little evidence of an increasing or decreasing trend in mean annual air 

temperature, whilst only one site showed a cooling trend (Keatinge et al., 2014).  

 

Some effects of weather on crops can be assessed through changes in mean environmental 

conditions. For example, the effect of variation in temperature and photoperiod on the 

duration of the vegetative phase of development in annual crops, and so on genotypic 

adaptation to conditions in different locations globally (Roberts et al., 1996). On the other 

hand, variation in crop yield and quality can depend greatly upon weather conditions at 

particular, highly sensitive periods within the growing season. In wheat (Triticum aestivum 

L.), grain yield was damaged greatly by brief periods of high temperature at early booting 

(Barber et al., 2017) and also at around the time of flowering (Barber et al., 2017; Ferris et 

al., 1998; Wheeler et al., 1996); the response of grain yield to nitrogen fertilizer was 

especially sensitive to the weather at a few discrete times of the year (Addy et al., 2020); 

yield was reduced but grain quality enhanced by drought in early- or mid-grain filling, 

respectively (Gooding et al., 2003); and high temperature imposed early in seed development 
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reduced both seed quality and protein quality but increased nitrogen and sulphur contents in 

the grain, whereas high temperature imposed late in the seed maturation phase improved seed 

quality (Nasehzadeh and Ellis, 2017). Hence the pattern of weather variables during the year 

as well as the average changes amongst years are important to crop production and to 

assessing climate change impacts on agriculture and food supply (Porter and Semenov, 2005; 

Trnka et al., 2014). 

 

Understanding simultaneous changes across multiple weather variables provides an 

understanding of how the climate has changed for agriculture, and potentially how this 

influences yield. A recent machine-learning and process-based modelling approach showed 

how understanding these climate interactions was complex with no single answer to yield 

failures (Webber et al., 2020). The use of multivariate analysis methods, in contrast to 

univariate analysis approaches, can provide insight into how the whole climate system has 

changed over several variables. Moreover, the pattern of variation in each weather variable 

during a year, the variation in these patterns amongst years, and whether or not the frequency 

of the different patterns is changing, is highly relevant to crop production and plant 

productivity more widely. Multivariate analysis methods have been applied before in climate 

studies. Cluster analysis was used to partition climate zones of the conterminous United 

States over temperature and precipitation variables from 1931 to 1980 (Fovell and Fovell, 

1993). Further, using data from 1950 to 2002, cluster analysis was used to describe cyclone 

trajectories in the western North Pacific (Camargo et al., 2007).  

 

The Rothamsted Meteorological Station (RMS) has recorded daily rainfall, temperature and 

sunlight together since 1892, whilst Rothamsted’s Long-Term Experiments (LTE) with 
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winter wheat, spring barley (Hordeum vulgare L.), and pasture grasses began even earlier in 

the 19th Century (Macdonald et al., 2018). The objective of this study was to apply 

multivariate analyses to monthly summarised rainfall, temperature and sunlight duration data 

from the RMS to test the hypothesis that annual weather patterns could be objectively 

categorised into separate weather clusters, representing characteristic climates throughout 

history over several variables, and to assess whether the frequency of membership of these 

weather clusters changed over time. Subsequently, we tested if the weather clusters identified 

were associated with differences in the total biomass off-take for winter wheat, spring barley 

(where biomass is grain plus straw), and forage yields on long-term pasture (two herbage cuts 

per year; one in mid June and another in Oct/Nov) from the LTEs at the Rothamsted site 

(Harpenden, Hertfordshure, UK). Total biomass of winter wheat and spring barley were used 

to compare the off-take with forage yields from long-term pasture. 

 

2. Methods 

2.1 Rothamsted Meteorological Data 

Data from the Rothamsted Meteorological Station comprised of daily rainfall, temperature 

and sunlight records from 1892 to 2016. The Rothamsted Meteorological Station has one of 

the longest meteorological records in the world and is used for all field data from Rothamsted 

Research. These data were summarised into monthly values for every crop growing year 

(October to September) during this period for each of total rainfall (mm), rainfall intensity 

(mm/day) (calculated as total rainfall divided by the number of days with > 1mm of rainfall), 

mean daily maximum temperature (°C), mean daily minimum temperature (°C), and total 

sunlight hours. Including mean daily maxima and minima captured the range between 

extreme mean temperatures, but to also consider impacts of the monthly extreme 
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temperatures in the analyses the overall minimum temperature (°C) and the number of days 

for which maximum temperatures exceeded 31°C were also included (the latter for the four 

months June, July, August and September only each year, as these were the only months 

31°C was exceeded). These monthly summaries of weather data were derived to capture both 

within-year variability and seasonal differences amongst years. In total 76 variables (12 × 6 + 

4) were calculated for each of the 125 years. 

 

2.2 Rothamsted Long-Term Experiment Data 

To make comparisons across the three experiments over multiple years, total biomass offtake 

(grain and straw off-take at 85% dry matter) data were used from the Broadbalk winter wheat 

experiment (continuous winter wheat, Section 1), the Hoosfield Continuous spring barley 

experiment (Series O), and the Park Grass Continuous herbage experiment (‘a’ subplots) 

from 1968 onwards (Macdonald et al., 2018). Note that within a genotype at this site the 

harvest index (grain yield /biomass yield) showed no trend over time in simulations (Addy et 

al., 2021). Park Grass yields were converted from 100% to 85% dry matter for this study. 

Yields from five different fertilizer treatments were used, including PKNaMg (Minerals), 48 

kg N ha-1 + PKNaMg (N1 + Minerals), 96 kg N ha-1 + PKNaMg (N2 + Minerals), farmyard 

manure (35 t ha-1 fresh manure p.a. on Broadbalk and Hoosfield; manures alternate every two 

years between farmyard manure and poultry manure (supplying 65 kg N ha -1 ) on Park Grass; 

poultry manure replaced fishmeal since 2003), or no inputs (Nil) because these covered a 

wide range of inputs and were applied consistently across all three experiments. However, the 

fertilizer forms differed between experiments. On Park Grass the N was applied as sodium 

nitrate, whilst on Hoosfield N was applied as calcium ammonium nitrate (Nitro-chalk). On 

Broadbalk N was applied as Nitro-chalk in 1968-85; since 1986 N has been applied as 
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ammonium nitrate. P and K were applied to all experiments as triple superphosphate and 

potassium sulphate to ensure crop growth was not nutrient limited. However, in 2001 and 

2003 P was withheld on some plots on Broadbalk and Hoosfield, respectively, to allow soil P 

concentrations to decline to more appropriate agronomic levels. In 2017 P inputs on Park 

Grass were decreased because many plots contained more than adequate levels of P for 

herbage production; further details are given in Macdonald et al. (2018). Yield data before 

1968 was excluded due to a lack of homogeneity of agricultural practices prior to the 

introduction of short-strawed cereal cultivars in 1968, whilst total biomass was analysed to 

avoid cereal cultivar effects on partitioning to grain yield (Austin and Ford, 1989) in 

Broadbalk and Hoosfield and for comparability with pasture yield. 

 

The soil of Broadbalk (wheat) is described as silty clay loam (Avery & Catt, 1995) with a top 

soil (0 – 23 cm) texture of 25% sand, 50% silt and 25% clay (Gregory et al., 2010). Hoosfield 

(barley) soil is described as flinty silty clay loam with a top soil (0 – 23 cm) texture of 28% 

sand, 52% silt and 20% clay (Blake et al., 2003). Park Grass (herbage) soil is described as 

silty clay loam (Avery & Catt, 1995), with a soil texture of 23% clay, 58% silt and 19% sand 

(Blake et al., 2003). 

 

The Rothamsted Meteorological Station was representative of the environment of all three 

experiments due to their proximity (e-RA Rothamsted, 2021). The distance from each of the 

three field experiment sites to the Rothamsted Meteorological Station were 0.94, 1.24 and 

0.88 km, respectively.  

 

2.3 Statistical Analysis 
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Principal components analysis (PCA) was used as a dimension reduction tool to identify the 

key sources of variation amongst the weather variables. Due to the seven underlying 

variables being measured on different scales, the principal components (PCs) were 

constructed from the correlation matrix. The loadings for each of the 76 monthly summaries 

identify those variables that contribute most to each of the principal components (those with 

the largest absolute loadings). The communalities for each monthly summaried weather 

variable for the nth dimension, calculated as the square root of the sum of squared loadings 

for the first n components, identify the overall contribution of each weather variable to the n-

dimensional solution (larger values indicate a greater overall contribution). The scores then 

show the value for each year on each of the principal components, identifying those years 

with similar underlying weather patterns (those years having similar scores across multiple 

principal components). A K-means clustering procedure (Hartigan and Wong, 1979) was 

applied to the scores for the selected set of the most important principal components (those 

explaining the majority of the overall variation in the data) to group years together based on 

their weather patterns.  

 

Multiple indices were considered to determine the optimum cluster number. The R package 

clusterCrit (Desgraupes, 2013) was used to investigate indices which could optimise cluster 

number. The within-cluster sum of squares and the C-Index were both used to select the 

optimum cluster number. The C-Index was used alongside the within-cluster-sum-of-squares 

value as an index to define optimum cluster size based on the range of within-cluster 

distances. The C-Index is defined by Desgraupes (2013) as  

𝐶 =
𝑆𝑊 − 𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
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where, 𝑆𝑊is the sum of the distances between all pairs of points within each cluster; 𝑆𝑚𝑖𝑛 is 

the sum of the smallest distances within each cluster; and 𝑆𝑚𝑎𝑥 is the sum of the maximum 

distances within each cluster. The C-Index was calculated for all numbers of potential 

clusters from 2 to 50. The optimum cluster number was chosen from an elbow in both the 

plot of within-cluster-sum-of-squares and C-Index plot. 

 

A linear mixed model (LMM) framework was used to analyse total biomass across weather 

clusters, the three experiments/crops (winter wheat in Broadbalk, spring barley in Hoosfield, 

and pasture in Park Grass), and five fertilizer treatments (PKNaMg, 48 kg N ha-1 + PKNaMg, 

96 kg N ha-1 + PKNaMg, FYM, and Nil) 

𝑦 = 𝑋𝛽 +𝑈𝛾 + 𝜀 

with y the response variable total biomass, X the fixed effects design matrix and U the 

random effects design matrix. The fixed model for cluster, experiment and fertilizer treatment 

represented the full factorial structure, and so terms (β) were fitted for the three main effects, 

three two-factor interaction effects and the three-way interaction effect. The random terms 

(𝛾) were the effect of plot (treatment within experiment) and the nested effect of year within 

plot. As years were clustered regarding their weather patterns, any additional variation 

associated with year within cluster was taken into account within the random model. The 

square root transformation of total biomass was analysed to satisfy the assumption of 

homogeneity of variance of the residuals across all treatment groups. 

 

3. Results 

3.1 Principal Components Analysis 
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The first 19 PCs explained 70% of the overall variation of the weather dataset. PC1 explained 

10.00% of the variability in the weather dataset, with PC2 and PC3 explaining a further 

6.53% and 5.80%, respectively. The loadings of total rainfall, mean daily maximum 

temperature, mean daily minimum temperature, total sunlight, rain intensity, minimum 

temperature, and days over 31°C for each month are shown in Figure 1 (a-f) for PC1 and 

PC2. The direction and magnitude (length) of the PCA loadings in Figure 1 illustrate how 

much of the variation of the weather dataset was explained by each variable. More 

information regarding the loadings for the first 30 PCs is given in Supplementary Table 1. 

 

PC1 had negative loadings for both mean maximum and mean minimum temperature for 

every month (Figure 1b-c) and so highlighted the overall variation in average temperature 

across the cropping year, with generally warmer years having more negative scores for PC1. 

Since both mean maximum and mean minimum temperature loadings had high negative 

values in PC1, a large proportion of variation in the weather dataset from 1892 to 2016 was 

associated with changes in mean temperature. A contrast in seasonal temperatures (both mean 

maximum and mean minimum) was highlighted in PC2 (Fig. 1b-c), with positive loadings for 

April, May, June, July, August, September (weaker for mean minimum temperature than for 

mean maximum temperature), but negative loadings for December, January, February and 

March. Thus, years with higher than average winter temperatures and lower than average 

spring/summer temperatures will tend to have more negative scores, while those with lower 

than average winter temperatures and higher than average spring/summer temperatures will 

tend to have more positive scores.  A similar seasonal contrast was observed in the loadings 

of minimum temperature and also the number of days over 31°C (Fig. 1f).  The seasonal 

contrast for total rainfall and, to a lesser extent, rain intensity was observed for PC1 (Fig. 1a, 

e), with positive loadings for June, July and August, and negative loadings for October, 
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January and February, reflecting differences between years with relatively wet winter and dry 

summers (more negative scores) and those with relatively dry winters and wet summers 

(more positive scores).  Positive PC2 loadings for total rainfall in November and March 

possibly indicate that a warmer November tends also to be wetter, whilst a colder March 

tends also to be wetter. For PC1, most of the sunlight hours variables had negative loadings 

(October and May were the only months with positive loadings), with a weak summer-winter 

seasonal contrast in PC2 (positive loadings for July, August, September and December, 

negative loadings for October, November, February and March (Fig. 1d). The negative 

loading for November sunlight hours is an interesting contrast with the positive loadings for 

temperature and total rainfall (a warmer November associated with fewer sunlight hours), a 

similar contrast being seen for December (opposite signed loadings), reflecting contrasting 

weather patterns between November and December . These first two principal components 

therefore represent general patterns in average temperature and sunlight hours across the 

whole of the cropping season, and a range of winter-summer seasonal differences in 

temperature, rainfall and sunlight. Similar interpretations could be determined by plotting the 

loadings for other pairs of principal components (Supplementary Table 1), or by identifying 

those varables with larger absolute loadings for each principal component. 

 

Communalities were used to assess the overall contribution of each weather variable to 

solutions including up to 30 dimensions (Supplementary Table 2), allowing identification of 

those variables contributing most to the selected 19-dimensional solution. Weather 

summaries which had communalities greater than 0.5 over the first 19 dimensions were from 

months in the late-spring and early-summer (April, May and June) and mid-late winter and 

early spring. Thus most of the weather variation captured in the first 19 dimensions (70% of 

variability) was explained by variation in weather in these periods. A further justification for 
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the choice of the first 19 dimensions to describe the key sources of weather variability can be 

seen by considering the communalities for PC solutions with fewer or more dimensions 

(Supplementary Table 2). For example, for the 11 dimension solution (50% variation 

explained) not enough of the weather signal was captured, particularly within the temperature 

variables (too many communalities below 0.5) whilst for the 26 dimension solution (80% 

variation explained) too much noise was captured in the combination of variables (a lack of 

distinctness in the communalities, with values for almost all variables greater than 0.5 or even 

0.6). Therefore, the 19 dimension solution (explaining 70% variation) was chosen as it 

captured enough of the long-term signal in the weather variables without being confounded 

by the inclusion of too much noise from the short-term variations in weather. 

 

3.2 Selecting Cluster Number 

There was no distinct elbow in the decline of the within-cluster sum of squares as cluster 

number increased (Fig. 2a). However, the rate of decline changed between a cluster number 

of 7 and 15 and there were also elbows in the decline of the C-Index at cluster numbers 5, 7 

and 10, with a local minimum at 17 (Fig. 2b). Accordingly, a cluster number of 10 was 

selected, with a C-Index of 0.19. The temporal distribution of the membership of the more 

frequent of the 10 clusters is shown in Figure 3 and all 10 are listed in Table 1. 

 

3.3 Cluster Summaries 

Between 1900 and 1999, 25, 16 and 23 of the years were grouped into Clusters 2, 3 and 10, 

respectively (Fig. 3; Table 1), whereas since 2000 10 of the 16 years were within Cluster 1. 

Therefore, Clusters 2, 3 and 10 can be considered as characteristic climates of the 20th 

Century, representing 64 out of 100 years (64%). Cluster 1, on the other hand, can be 
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considered as a characteristic climate of the early 21st Century, representing 10 out of the 16 

years (63%). The membership of Clusters 7 and 9 span the 20th and 21st Century, but are 

more frequent towards recent periods, and so their respective memberships in the early to 

mid-20th century maybe considered anomalous years. Years within Cluster 8 span 70 central 

years of the 20th century, with cold January and February periods. The membership of all 

other clusters was small and these are therefore considered as outlier clusters or years. 

 

Cluster 1 had the highest temperature, on average, across the whole crop production season 

(Fig. 4a-b); years within Cluster 1 also experienced very low levels of rainfall in June, but 

high rainfall from October until February. Mean maximum temperature for Cluster 2 between 

December and March and minimum temperature for February and March were all colder than 

for Clusters 3, 7, 9 and 10 (Fig. 4a-b). Years within Cluster 2 generally had a cold winter and 

early-spring. Years within Cluster 3 had low rainfall from April to August (Fig. 4c). Years 

within Cluster 7 had low hours of sunlight in February to April  (Fig. 4d), with low rainfall in 

December, January, March, April and May (Fig. 4c). Years within Cluster 8 were generally 

cooler (Fig. 4a-b), with more between-month variation in sunlight duration (Fig. 4d). Cluster 

9 provided warmer months in general and particularly in July to September (Fig. 4a-b), with 

low rainfall between May and August (Fig. 4c). Cluster 10 may be considered the typical 20th 

Century climate (Fig. 3). Its defining characteristics include low mean temperature in 

September and October (Fig. 4a-b), high rainfall in September to November (Fig. 4c), and 

low sunshine hours from April to September (Fig. 4d).  

 

3.4 Effects on Crop Production 
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The Rothamsted LTE annual total biomass data from 1968-2016 were collated for the years 

in five of the ten clusters identified above. These were Clusters 1, 2, 7, 9 and 10 (12, 11, 6, 8, 

and 6 years’ data, respectively) and were selected because each included a minimum of six 

years of results from 1968 onwards (Table 1). Hence, only six of the 49 years were omitted 

from the analysis.  

 

The main effect of Cluster explained the largest amount of variation (F(4, 552, 37.74), P < 

0.001; Supplementary Table 3), demonstrating a large impact of the five weather patterns on 

total biomass production across all three Experiments (i.e. crops). In contrast, the main effect 

of Experiment did not explain much model variation (F(2, 552, 0.85), P = 0.427) but that for 

Treatment (fertilizer regime) also explained large amounts of model variation (F(4, 552, 

13.89), P < 0.001).  

 

Differences in the total biomass of winter wheat, spring barley and pasture amongst years 

were exposed by a Cluster by Experiment interaction (F(8, 552, 8.09), P < 0.001), where 

large differences were detected (Supplementary Table 3), with the three crops responding 

differently to variation in annual weather patterns (Fig. 5). All three crops provided similar 

total biomass across the years within Cluster 7, but the cluster means of herbage off-take 

were less variable across the five weather clusters than cereal biomass yields (Fig. 5). The 

total biomass of winter wheat and spring barley grown at Rothamsted, UK, from years within 

Cluster 1 (years generally warmer and wetter, typical early 21st Century climate) were, on 

average, lower than those of herbage. On average, years within Cluster 2 (cooler winter and 

early-spring) provided the greatest winter wheat biomass, whilst years within Clusters 7 
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(warm early-summer and drier) and 10 (generally cooler, typical 20th Century climate) 

provided the highest spring barley and pasture off-take, on average, respectively. 

 

4. Discussion 

Climate change is often discussed principally in terms of the long-term rise of temperature 

(e.g. IPCC, 2019); and the temperature signal of climate change recorded globally long-term 

over land and ocean, or over land alone, is indeed unambiguous (IPCC, 2019). Nonetheless, 

weather and climate are much more than just temperature alone, whilst crop productivity is 

also dependent upon rainfall and solar radiation and the temporal patterns and extremes of 

their distribution during the growing season (and earlier during tillage and sowing or planting 

for non-perennial crops). The use of univariate methods to investigate the individual 

influence of temperature and rainfall on crop yield has limitations (Katz, 1977). Whilst 

multivariate cluster analysis has been applied to spatial weather data (Fovell and Fovell, 

1993), we have shown here, that: the combination of Principal Components Analysis and K-

means analysis can be applied to characterise the temporal patterns of key weather variables 

over crop production years into a limited number of distinct clusters (Figs 4-7); that the 

relative frequency of these clusters has changed markedly over the period 1892 to 2016 (Fig. 

3), thereby providing clear evidence of a change in climate; and that these clusters explain 

differences in crop total biomass at this site (Fig. 5). 

 

Although years do not naturally group into clusters depending on their weather, this 

multivariate approach of objectively detecting changes in climate has identified several years 

with similar weather conditions in the late-20th and early-21st centuries, conditions which 

differ markedly from those generally seen in earlier years. The methods of PCA and cluster 
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analysis made comparisons between climates (clusters) more meaningful  by considering the 

whole weather profile, rather than an average temperature being compared to a moving 

baseline climatology. PCA takes potentially correlated variables within a dataset and forms 

uncorrelated linear combinations of these variables. By constructing such uncorrelated linear 

combinations, the primary sources of between-year variability within the Rothamsted 

Meteorological Station data were identified. 

 

For example, PC1, the linear combination of variables which explained the maximum 

proportion of the variability of the RMS dataset, separated out a temperature and sunlight 

effect, suggesting that the years from 1892 to 2016 may first be ordered from warmer to 

cooler. Further, the communalities for the 19 dimension solution (including the first 19 PCs) 

identified winter, early and late-spring, and summer as the most represented seasons across 

the different weather variable groups, responsible for explaining most of the between-year 

variability over the study period. A higher dimensional solution would have failed to identify 

these key seasons by introducing too much short-term weather variability (noise), whilst a 

lower dimensional solution would have failed to capture all of the important long-term 

weather variability (signal). The identification of these key periods was to be expected from 

previous reports of climate change globally (Hartmann et al., 2013; Kendon et al., 2017; 

Kirtman et al., 2013; Kovats et al., 2014; NOAA, 2017). 

The membership of Cluster 1 (generally warmer temperatures than other clusters) featured 10 

of the 16 years in the 21st Century analysed, two of the 1990s decade, and just a single year in 

the entire preceding period of 1892-1989. Therefore, Cluster 1 is the archetype of climate of 

the 21st Century to date. In comparison, in the early and mid-20th Century the Rothamsted 

climate varied mainly between cool to slightly warm with some cool and wet years (Clusters 
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2, 3 and 10), albeit with warmer years with some wet and dry periods (Clusters 4, 7, 8 and 9). 

Membership of clusters 3, 4, 8, and 10 have not occurred since 1984, 1964, 1990, 1986, and 

1993, respectively, suggesting a low likelihood of these climates occurring in the 21 st 

century. This change to a high frequency of warmer years is in accordance with predictions 

(IPCC, 2014).  

 

Studies into crop variation from time-series yield data have long-shown associations between 

inter-annual variation in weather and that for the yield of winter wheat, barley and pastures 

(Addy et al., 2020; Chmielewski and Potts, 1995; Fisher, 1925; Hatfield and Dold, 2018; 

Hooker, 1907; Silvertown et al., 1994; Wishart and Mackenzie, 1930). The mean total 

biomass across all fertilizer treatments for both winter wheat and spring barley in years 

within Cluster 1 was lower than the total biomass for years in Clusters 2, 7, 9 and 10 (Fig. 5). 

Generally, Cluster 1 was warmer in April, May, June, July and August and experienced a 

drier June compared to clusters 2, 3 and 10. Previous analysis from studies of crop yield 

variation at Rothamsted showed that on  average rainfall during short periods in the summer 

was beneficial to barley yields (Wishart and Mackenzie, 1930). Years which were warm and 

dry (Clusters 7 and 9) had lower winter wheat and spring barley total biomass compared to 

years which were generally cooler (Clusters 2 and 10). Total biomass from years which were 

warmer (Clusters 1, 7 and 9) were generally expected to be lower, even when years from 

Cluster 1 were generally drier than those from 7 and 9. Where warmer temperatures increase 

grain growth rate, the grain-filling duration is reduced and the overall effect is lower yield 

because the former is more than offset by the latter (Sofield et al., 1977). Moreover, if the 

crops experienced periods of heat stress around anthesis this will further reduce grain yield 

due to poor seed set (Barber et al., 2017; Ferris et al., 1998; Gooding et al., 2003; Nasehzadeh 

and Ellis, 2017; Wheeler et al., 1996). Hence the warmer temperatures at these key times, 
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most common in years in the the early 21st Century (Cluster 1), were the likely cause of the 

lower winter wheat and spring barley off-take. 

 

On average, drier years (Clusters 7 and 9) provided lower herbage off-take in Park Grass than 

warmer temperatures and wetter years (Cluster 1). This tallies with earlier studies of herbage 

yields from Park Grass which showed a positive relationship between rainfall and biomass 

(Silvertown et al., 1994) and that yields were associated negatively with high temperature in 

July and August but positively with higher rainfall (Sparks and Potts, 2003). The comparison 

amongst clusters for herbage and cereal biomass (Fig. 5) shows that herbage biomass have 

been the more stable to date with changes in climate over this 49-year period. This suggests 

that the positive effects of higher rainfall offset the negative effects of warmer temperatures 

on pasture performance. If rainfall levels are maintained, this indicates that pastures may be 

more resilient to future changes in climate this century than either wheat or barley.  

 

The main effect of fertilizer treatment on biomass did not differ amongst clusters, suggesting 

the effect of fertilizer is consistent across clusters for these selected treatments 

(Supplementary Table 3). Temporal variation in yields from other long-term experiments 

have been shown to be influenced by fertilizers, however (Macholdt et al., 2021). Indeed, the 

quantitative response of winter wheat and spring barley grain yield to nitrogen fertilizer in the 

Rothamsted LTEs was shown to be particularly sensitive to temperature and rainfall in 

certain months of the year (Addy et al., 2020). We suggest that the current study with a 

reduced range of fertilizer treatments was not sufficiently sensitive to detect an interaction. 

The total biomass of short-strawed and long-strawed wheat cultivars were the same on low-

fertilised plots in the Broadbalk Experiment (Austin and Ford, 1989), but problems including 
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take-all disease (Etheridge, 1969) and managing the weed blackgrass (Fisher, 1921) on the 

Rothamsted LTEs are examples of other factors influencing inter-annual yield variation. 

 

Clusters 2 and 10 (with cooler spring temperatures and memberships spanning the 20th 

Century) occurred with low frequency in the 21st Century (one and zero years, respectively) 

compared to any other period since 1892. If the observed climate trends continue, more years 

such as in Clusters 1, 7 and 9 (generally warmer and lower yielding) would be expected 

throughout the 21st Century with fewer years such as in Clusters 2 and 10 (generally cooler 

and higher yielding). The individual influences of temperature and rainfall variables on yield 

have been investigated previously using univariate analysis methods, but these approaches 

have been shown to have limitations for predicting future responses (Katz, 1977). However, 

this study has explored the multivariate effect of climate on several crop production systems 

through the identification of contrasting climates, albeit only at one site in the UK. This study 

demonstrates how the application of multivariate cluster analysis, not just to spatial weather 

data (Fovell and Fovell, 1993) but also to temporal weather datasets, can be used to 

objectively assess how climate has changed over multiple correlated variables and the 

consequent impact on the productivity of several key arable crops.  

 

5. Conclusions  

The major conclusions of this study are:  

(1) Multivariate cluster analysis can be applied to temporal weather datasets to 

objectively identify long-term changes in weather patterns across multiple variables, 

including all the main meteorological inputs relevant to crop production (i.e. the 

whole weather profile not just temperature alone). 
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(2) Ten distinct weather clusters were identified, 

(3) A weather cluster, comprising higher average temperature with more intense rainfall 

but a dry June, has dominated the most recent 25-year period.  

(4) Five weather clusters which occurred frequently during much of the 20th Century 

have not recurred in recent times. 

(5) The above provides unambiguous evidence of climate change in several more 

dimensions than mean temperature alone. 

(6) Differences in the total biomass of crops of winter wheat, spring barley, and herbage 

was associated strongly with differences between the identified weather clusters. 
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Figures 

Figure 1: A representation of the loadings for the first two principal components (PC1, PC2) 

from the Principal Components Analysis of summarised monthly weather variables at 

Rothamsted (1892 to 2016). For (a) total rainfall, (b) mean daily maximum temperature, 

(c) mean daily minimum temperature, (d) total sunlight, (e) rain intensity, and (f) 

minimum temperature (black) for each month of the year and days over 31°C in the 

summer months June, July, August and September (grey); PC1 and PC2 explained 

10.00% and 6.53%, respectively, of weather dataset variability; the solid ellipse 

represents a magnitude of 0.25 in all directions from the origin, identifying those 

variables with a communality greater than 0.25 in the 2 dimension PCA solution. 

Figure 2: Scree plots of the within-cluster sums of squares (a) and C-Index (Desgraupes, 

2013) (b) as cluster number varied from 0 to 50. The vertical line at cluster number 10 is 

discussed in the text: the C-Index value is 0.19 this point. 

Figure 3: The smoothed relative frequency of occurrence (smoothed histograms) of years in 

Clusters 1, 2, 3, 7, 8, 9 and 10 from 1892-2016 at Rothamsted. The vertical lines identify 

the individual years in each cluster. The three weather clusters omitted (4, 5, 6) occurred 

only infrequently (Table 1).  

Figure 4: Monthly summaries of mean daily maximum (a), mean daily minimum (b), mean 

rainfall (c), and Mean total sunlight duration (d) for weather clusters 1 (black solid line), 

2 (grey dashed line), 3 (grey dotted line), 7 (grey dot-dashed line), 8 (black dashed line), 

9 (black dotted line), and 10 (black dot-dashed line) at Rothamsted (Table 1) identified 

by multivariate analysis. 

Figure 5: Mean annual biomass yields (t ha−1 at 85% dry matter, transformed to square root  

left-hand axis, since analysis was conducted after this transformation; untransformed 
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scale shown on the right-hand axis), averaged over all fertilizer treatments, of winter 

wheat (■), spring barley (●), and pasture crops (two cuts per year) (▲) for those years 

over the period 1968-2016 within each of five different weather clusters at Rothamsted 

(Table 1) identified by multivariate analysis. The vertical line is the standard error of the 

difference (SED). The five weather clusters omitted from analysis occurred only once 

(5, 6), twice (3, 8), or not at all (4) during the period 1968-2016. 
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Tables 

Table 1: The weather cluster membership of years between 1892 and 2016 for the selected 

10-cluster solution 
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Supplementary Tables 

Supplementary Table 1: The loadings for each of the 76 weather variables for the first 30 

principal components from the Principal Components Analysis. 

Supplementary Table 2: The communalities for each of the 76 weather variables for PCA 

solutions including up to 30 dimensions. 

Supplementary Table 3: F-statistics with estimated denominator degrees of freedom (DDF) 

and observed p-values for the cluster (weather) by experiment (crop) by treatment (fertilizer) 

analysis.  
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Table 1  

Cluster 
Number of Years 

(1968 to 2016) 
Year Defining Characteristics 

1 13 (12) 
1943, 1994, 1999, 2000, 2001, 2002, 2004, 2005, 2006, 

2007, 2008, 2014, 2015 
High temperatures, drier June 

2 27 (11) 

1892, 1900, 1901, 1904, 1907, 1908, 1909, 1915, 1928, 

1929, 1941, 1946, 1954, 1955, 1956, 1962, 1969, 1971, 
1977, 1978, 1979, 1980, 1985, 1987, 1991, 1996, 2013 

Cold Winter and early-Spring 

3 18 (2) 
1896, 1897, 1902, 1903, 1905, 1912, 1913, 1916, 1920, 
1921, 1923, 1935, 1938, 1948, 1957, 1960, 1974, 1984 

Cold August to September 

4 6 (0) 1895, 1940, 1942, 1947, 1963, 1964 
Cold Winter and years with a general 
drought 

5 4 (1) 1898, 1906, 1911, 1990 
Cold March to June and a warm July to 
September. General absence of rainfall 
and more hours of direct sunlight 

6 1 (1) 1976 Drought Summer with warm temperatures 

7 11 (6) 
1893, 1914, 1934, 1945, 1952, 1982, 1992, 1997, 2009, 
2010, 2011 

Warm March to June, dry Spring 

8 9 (2) 1917, 1919, 1922, 1924, 1931, 1965, 1966, 1970, 1986 
Cold January and February, similar to 
Cluster 2, but years were generally 
warmer 

9 12 (8) 
1899, 1933, 1949, 1959, 1975, 1983, 1989, 1995, 1998, 
2003, 2012, 2016 

Warm July to September, dry July and 
August 

10 24 (6) 
1894, 1910, 1918, 1925, 1926, 1927, 1930, 1932, 1936, 
1937, 1939, 1944, 1950, 1951, 1953, 1958, 1961, 1967, 
1968, 1972, 1973, 1981, 1988, 1993 

Cool and dry March. 
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