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Abstract

Sub-seasonal forecasts are becoming more widely used in the energy sector to

inform high-impact, weather-dependent decisions. Using pattern-based methods

(such as weather regimes) is also becoming commonplace, although until now

an assessment of how pattern-based methods perform compared with gridded

model output has not been completed. We compare four methods to predict

weekly-mean anomalies of electricity demand and demand-net-wind across

28 European countries. At short lead times (days 0–10) grid-point forecasts have
higher skill than pattern-based methods across multiple metrics. However, at

extended lead times (day 12+) pattern-based methods can show greater skill

than grid-point forecasts. All methods have relatively low skill at weekly-mean

national impact forecasts beyond day 12, particularly for probabilistic skill met-

rics. We therefore develop a method of pattern-based conditioning, which is able

to provide windows of opportunity for prediction at extended lead times: when

at least 50% of the ensemble members of a forecast agree on a specific pattern,

skill increases significantly. The conditioning is valuable for users interested in

particular thresholds for decision-making, as it combines the dynamical robust-

ness in the large-scale flow conditions from the pattern-based methods with

local information present in the grid-point forecasts.

KEYWORD S

demand, forecasting, pattern forecast, power system, sub-seasonal, weather regimes, wind
power

1 | INTRODUCTION

As power systems across the world transition towards
low carbon electricity generation, they are becoming
increasingly dependent on weather. Consequently, high
quality weather forecasts are becoming increasingly
important for decision-making days to weeks ahead to
maintain a secure and reliable energy system. Examples

of these decisions include: managing reserve generation
margins, maintenance scheduling, hydropower schedul-
ing, anticipating winter heating demand requirements
and cooling water requirements for conventional genera-
tion (White et al., 2017). Each of these decisions rely on
accurate forecasts of demand, wind power, solar power
or hydro generation, and the consequences of mis-
estimation are exacerbated in periods of unusually high
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system stress (e.g., low wind, low temperature periods).
Accurate forecasts allow users to get extra information
relevant for decision-making in the energy market when
predicting energy prices. This can ultimately lead to large
cost savings and enhanced profits for energy companies.

A power forecast is constructed from two main com-
ponents: a meteorological component, reliant on the best
estimate of the weather on the timescale of interest, and
an energy-system component, which explains the conver-
sion from weather to energy (see Cannon et al., 2017 for
further discussion). The focus of this work is on the
underlying meteorological predictability, rather than
the optimal method to convert from meteorological to
energy variables. This addresses the overarching ques-
tion: What is the best meteorological forecasting method
that is available at sub-seasonal-to-seasonal (S2S) time-
scales for creating European national power forecasts?

Several energy-meteorology studies are present in the
literature, which demonstrate skill at lead times weeks-to-
months ahead at predicting either demand (Bloomfield
et al., n.d.; De Felice et al., 2015; Dorrington et al., 2020;
Thornton et al., 2019) or wind power generation
(Bloomfield et al., n.d.; Clark et al., 2017; Lled�o et al., 2019).
These studies have typically focused on power forecasts
made by converting gridded surface meteorological data
(e.g., near-surface winds, surface air temperature, insola-
tion) into quantitative estimates of power generation or
demand (typically for individual countries and energy vari-
ables). They therefore fail to adopt a comprehensive view of
the skill present once forecasts of generation and demand
are combined, or across networks and interconnections
spanning large regions.

Common themes in the S2S forecasting research are
the use of techniques based on large-scale patterns
(Robertson & Vitart, 2018), including the so-called ‘weather
regime’ (WR) approaches (Michelangeli et al., 1995).
Underlying this research interest are two distinct concepts.
It is well established that forecast errors typically grow and
saturate more slowly at larger spatio-temporal scales,
retaining predictability at longer lead times than individual
grid-point forecasts in which error growth and saturation
are more rapid (Hoskins, 2013). Suitable patterns are typi-
cally identified through a combination of principle-compo-
nent-based analyses and/or clustering algorithms. The
concept of regime-like behaviour has a long history in mete-
orological research (i.e., the evolution of the atmosphere is
viewed as transitioning between a set of somewhat discrete
states (Madonna et al., 2017; Michelangeli et al., 1995;
Woollings et al., 2010)). Some regimes or regime transitions
are inherently more predictable than others (Frame
et al., 2011; Matsueda & Palmer, 2018).

Much of the science within the meteorological com-
munity has focused on the skill present in forecasts of

Euro-Atlantic teleconnections at seasonal timescales
(Lled�o et al., 2020) such as the North Atlantic Oscillation
(NAO; Baker et al., 2018; Dunstone et al., 2016; Scaife
et al., 2014) and Euro-Atlantic WRs at sub-seasonal time-
scales (Büeler et al., 2020; Charlton-Perez et al., 2018;
Ferranti et al., 2015; Matsueda & Palmer, 2018). Forecast
skill for the daily occurrence of WRs has, for example,
been shown to extend to approximately 2 weeks for sub-
seasonal forecasts (Ferranti et al., 2018; Matsueda &
Palmer, 2018) with similar results found for WRs over
North America (Robertson et al., 2020). Skill extends to
3 months for forecasts of seasonal-mean teleconnection
patterns (Lled�o et al., 2020), with models showing skill out
to a year-ahead for the NAO teleconnection pattern in par-
ticular (Dunstone et al., 2016). The level of skill has been
shown to be conditional on particular atmospheric states
(e.g., Sudden Stratopsheric Warmings; Beerli et al., 2017;
Büeler et al., 2020; Charlton-Perez et al., 2018) or global
teleconnections such as the El Niño–Southern Oscillation
and the Madden–Julian oscillation (Lee et al., 2019),
supporting the concept that particular atmospheric states
offer windows of opportunity for enhanced predictability
(Mariotti et al., 2020; Robertson et al., 2020).

Despite the popularity of pattern-based methods to
understand and predict the large-scale atmospheric circu-
lation, they are associated with the key caveat that skill
in forecasting the large-scale meteorological pattern (typi-
cally observed in 500 hPa geopotential height or surface
pressure) does not in itself guarantee skill in terms of
predicting a desired surface impact response (e.g., near-
surface wind speeds or temperatures, wind power genera-
tion or electricity demand). Recent work using historic
reanalyses has, however, convincingly demonstrated that
many Euro-Atlantic weather patterns (with various
methods of construction) relate to relevant surface weather
conditions (Bloomfield, Brayshaw, & Charlton-Perez, 2020a;
Cortesi et al., 2019; Drücke et al., 2020; Garrido-Perez
et al., 2020; Grams et al., 2017; Thornton et al., 2017; van
der Wiel et al., 2019) and to European electricity demand,
wind and solar power generation (Bloomfield, Brayshaw, &
Charlton-Perez, 2020a; Grams et al., 2017; Lled�o
et al., 2020; van der Wiel et al., 2019). This suggests that,
given these patterns can be forecast at lead times out to
2 weeks and 3 months for WRs and teleconnections respec-
tively, they could potentially offer benefits over grid-point
forecasts. A recently developed pattern-based method
(targeted circulation types, TCTs) can further enhance the
linkage between surface responses and the large-scale atmo-
spheric circulation by classifying patterns based on energy-
system data rather than large-scale meteorological fields
(Bloomfield, Brayshaw, & Charlton-Perez, 2020a).

Given the potential of pattern-based forecasts for
enhanced predictability and the demonstrated link
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between large-scale circulation patterns and surface
impacts, pattern-based information is widely seen as
desirable for many forecast applications, such as energy-
system users and traders wishing to make decisions at
extended lead times. A recent survey conducted through
the S2S4E climate service project found 60% of the 30 sur-
vey participants currently use pattern-based information,
with a further 27% seeking to use them in future opera-
tions (Project S2S4E, 2020). This may be due to the rela-
tively straightforward interpretation of the pattern-based
methods. However, despite this interest, the specific
advantages of pattern-based forecasting remain unclear.
In particular, questions remain as to whether pattern-
based approaches offer: (a) a general increase in skill over
comparable use of individual surface grid-point data from
the same forecast by identifying the surface response
from the more predictable large-scale atmospheric flow,
and/or (b) a means to identify variations in predictability
over time, such as windows of opportunity where predict-
ability is enhanced or degraded.

In the present study, a grid-point forecast is defined as
one that uses grid-point surface meteorological forecasts
(e.g., 10 m wind), and applies calibration and conversion
models to estimate a relevant power quantity (e.g., national
wind power output). In contrast, a pattern-based forecast of
the same power quantity first assigns the forecast of the
large-scale atmospheric flow into one of a discrete set of pre-
identified circulation patterns (WRs or TCTs). Secondly, it
applies a conversion model (based on a historical statistical
relationship between the pattern and power production) to
estimate a surface impact. To the best of our knowledge,
there are no examples in the literature of pattern-based fore-
casts being directly compared with an equivalent grid-point
forecast at sub-seasonal timescales. This is despite wide-
spread interest in the climate services community, where
pattern-based methods are clearly expected to offer advan-
tages. The research questions for this study are therefore:

1. Do pattern-based forecasts offer more skilful Euro-
pean power predictions than equivalent grid-point
based forecasts?

2. Can pattern-based methods help to identify windows
of opportunity in which grid-point forecast skill is
enhanced/degraded?

This study is structured as follows. The reanalysis
data and S2S prediction systems used are described in
Section 2. Methods of creating European energy data,
and creation and verification of pattern-based forecasts
are discussed in Section 3. Section 4 starts with compari-
sons of the grid-point based forecasts to pattern-based
forecasts using WRs and TCTs (Section 4.1), with Sec-
tions 4.2 and 4.3 unpacking the reasons for the levels of

pattern-based skill that are present. Following this, the
potential for conditional predictability of the grid-point
forecasts is investigated (Section 4.4). Conclusions, les-
sons learned and potential future developments for these
methods are highlighted in Section 5.

2 | DATA

2.1 | The ERA5 reanalysis

The process of estimating power system behaviour from
meteorological data is complex, due to the importance of
both meteorological and non-meteorological factors (see
Bloomfield, Gonzalez, et al., 2020b). Due to the added
complexities of real-world power data, we choose to fol-
low an idealized model approach, where national
demand and wind power generation created from the
ERA5 reanalysis (Hersbach et al., 2020) using established
models (see Section 3.1) are taken as truth, and the S2S
model performance is compared with this. Using this ide-
alized model set-up removes the uncertainty associated
with power system operation and human behaviour from
the analysis, and allows us to cleanly compare the meteo-
rological skill of the forecast methods. It also removes the
uncertainty associated with weather-to-energy conver-
sion models.

The ERA5 reanalysis is available at hourly resolution
from 1950 to present at approximately 30 km spatial reso-
lution. The S2S hindcasts are however not available at
such high spatial and temporal resolution, so the ERA5
reanalysis is interpolated to match the temporal resolu-
tion of the S2S models (see Section 2.2).

2.2 | S2S forecasting systems

The two forecasting systems used in this study are the
European Centre for Medium-Range Weather Forecasts
(ECMWF) extended range forecasting system (cycle
CY41R1) and the National Center for Environmental Pre-
diction Climate Forecast System (NCEP-CFS; version
T126L64GFS). Both are available for download from the
S2S database (Vitart et al., 2017). In this study, hindcasts
are taken from these models covering the period 1996–
2015 for ECMWF and 1999–2010 for NCEP-CFS (called
NCEP for brevity). ECMWF forecasts are available on
Mondays and Thursdays with an 11-member ensemble.
The NCEP model produces a forecast every day, but only
with four ensemble members. To make the fairest
possible comparison between these two models, a lagged-
ensemble has been constructed from NCEP, where fore-
casts from the preceding 2 days of the ECMWF start
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dates are grouped together, to provide a 12-member
lagged-ensemble twice a week. At short lead times this
lagged-ensemble approach will result in reductions in
skill of the NCEP forecasts compared with ECMWF
(Manrique-Suñén et al., 2020). However, as the main
focus of this study is on extended lead times, this effect is
thought to be minimal. Only hindcasts initialized in the
months December–February are considered in this study,
as this is a critical period for weather-dependent power
system operation and also a period of relatively high
hindcast skill (Bloomfield et al., n.d.). As the focus of this
study is on the sub-seasonal predictability, skill assessment
is performed on weekly-mean forecasts of which weeks
0–3 are defined as days 0–6, 5–11, 12–18 and 19–25,
respectively. The reason for starting at day 5 is that shorter
lead times are not the focus of this study, or the intended
use of the S2S forecasts. Starting at day 5 also allows for
any time needed for forecast acquisition, calibration and
conversion to energy variables. An overlap is present
between week 0 and week 1 so that week 1 is consistent
with the definitions used in the S2S4E project. We note
that the data used here correspond to hindcasts, which
have smaller ensemble sizes and a worse representation
of forecast uncertainty than operational forecasts. This
limitation, however, does not affect the robustness of the
comparison between the methods presented in this study.

The fields available from the S2S database, which are
used for this study, are daily-mean 2 m temperature and
midnight (00 UTC) 10 m wind speed at 1.5� spatial resolu-
tion. These variables were calibrated using the method
of variance inflation (Doblas-Reyes et al., 2005) to a
corresponding version of ERA5 interpolated to 1.5� as the
reference. The method ensures that the lead-dependent
reforecast mean and variance agree with those in ERA5, and
also that the correlation between the reforecast and ERA5 is
preserved (Doblas-Reyes et al., 2005). Each individual
reforecast is calibrated by comparing all the other re-forecasts
made on the same calendar date to a reanalysis. This is
sometimes known as a leave-one-out approach (e.g., 1996 is
corrected using data from 1997 to 2015). The correction to
the mean is performed by subtracting a lead-time dependent
reanalysis-based climatology. Before calibration, the 10 m
hindcast wind speeds were first converted to 100 m wind
speeds using a wind power law (to match the available
ERA5 wind speeds). Full details on this process are provided
in (Bloomfield et al., n.d.), and the corresponding datasets
are available from https://doi.org/10.17864/1947.275.

3 | METHODS

In this section, four routes to producing demand and
demand-net-wind (DNW) forecasts (shown in Figure 1)

are discussed in detail. These are energy variables from
gridded hindcasts (Section 3.1), energy variables
from WR hindcasts (Section 3.2), energy variables from
TCT hindcasts (Section 3.3) and energy variables from
conditional WR and TCT hindcasts (Section 3.4) where
the outputs from each method are a time series forecast
of national energy variables. Details of relevant skill met-
rics used in the study are given in Section 3.5.

3.1 | Energy variables from gridded
hindcasts

The methods for creating national demand and wind
power forecasts discussed below are applied to 1.5� ver-
sions of ERA5 and the bias-corrected re-forecasts to give
grid-point based reconstructions of national energy vari-
ables. Within this study all national energy data are
viewed as anomalies, where the mean is subtracted and
then normalized by the standard deviation to account for
the wide range of magnitudes and variability of national
demand and wind energy production across Europe. This
makes the magnitude of deviations from 0 equally impor-
tant in all countries (see Bloomfield, Brayshaw, &
Charlton-Perez, 2020a for further discussion). A high-
level schematic of this method is given in the blue box in
Figure 1, where daily-mean temperatures are converted
into weekly-mean demand.

3.1.1 | Electricity demand

Electricity demand is calculated with a national-level mul-
tiple linear regression model containing parameters to cap-
ture both meteorological and human behaviour. Each
country has a unique regression model, which is trained
on 2 years of measured demand data (2016–2017) from the
ENTSO-E transparency platform (ENTSOE, 2018), and
then applied retrospectively to the ERA5 reanalysis from
1980 to 2018 and to the relevant S2S hindcasts. This
results in two time series of data, one from the hindcast
and one from ERA5, which can be compared. In this
study, a weather-dependent demand model is used
(which includes only the weather-dependent terms
driven by national-average temperatures) to highlight
the meteorologically-driven power system variability
(see Bloomfield, Brayshaw, & Charlton-Perez, 2020a).
Regression coefficients are used for national-average
temperatures derived from the native ERA5 grid (~0.3�)
rather than from the 1.5� grid to give the best possible
representation of national demand. This is particularly
important for small countries or those with complex
coastlines and orography.
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3.1.2 | Wind power generation

Wind power capacity factor is calculated based on the
methodology of Bloomfield, Brayshaw, & Charlton-
Perez (2020a). ERA5 100 m wind speeds are first calibrated
to the Global Wind Atlas (GWA), to account for low wind
speed biases over regions of complex terrain (GWA, 2018).
The national capacity factor is calculated by passing gridded
bias-corrected 100 m wind speeds through an appropriately-
chosen power curve and aggregating based on the locations
of installed turbines taken from thewindpower.net. Further
details and validation of the models are given in (Bloomfield,
Brayshaw, & Charlton-Perez, 2020a). The wind power model
performs well compared with other studies, which follow
this now-standard overall approach (Cannon et al., 2015;
Lled�o et al., 2019; Sharp et al., 2015).

3.2 | Energy variables from WR
hindcasts

Daily geopotential height data are taken from the S2S
hindcast models, and used as the input to calculate the

WR pattern forecast (see orange box in Figure 1 for a
summary of the method). The method of Cassou (2008) is
adapted to calculate the weekly-mean WRs from the
weekly-mean 500 hPa geopotential height data. The first
14 principal components (explaining 90% of the variance)
of December–February area-weighted weekly-mean
500 hPa geopotential height over the Euro-Atlantic region
(90 W–30 E, 20 N–80 N) are classified into four circulation
types using the k-means clustering algorithm. This method
has been used frequently in the literature to classify daily
WRs, and previous studies have highlighted the impacts
on energy systems (Bloomfield, Brayshaw, & Charlton-
Perez, 2020a; van der Wiel et al., 2019). The four patterns
are commonly known as the positive and negative phases
of the North Atlantic Oscillation (NAO+ and NAO�),
Scandinavian blocking (ScBl) and the Atlantic Ridge
(Atlr). As shown in the study by van der Wiel et al. (2019),
each of the traditional WRs can be related to anomalous
energy conditions. For example, the NAO� regime is com-
monly associated with anomalously high demand and low
wind power generation over much of Central and North-
ern Europe (see Figure 2, left column). We note that there
are multiple methods to calculate WRs, which can have

FIGURE 1 A schematic diagram of the three types of method used to forecast national demand and demand-net-wind in this study. Blue box:

Grid-point forecasts, where an example of daily-mean temperature (T) can be converted to weekly-mean energy demand (D). Orange box: An

example for weather regimes (WRs) where daily geopotential height (Z) can be converted into a probability distribution forecast of demand. Green

box: A conditional pattern forecast example for WRs where a weekly-mean pattern (see orange box) is ‘kept’ if 50% or more ensemble members

agree on a pattern. The weekly-mean grid-point energy forecasts for these situations (see blue box) are used as the conditional pattern forecast
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more than four patterns (e.g., Garrido-Perez et al., 2020;
Grams et al., 2017). Here a method resulting in four pat-
terns is used for complementary with the definition of the
TCTs (which are designed using a variation on the
Cassou (2008) method).

To produce a national energy forecast from meteoro-
logical patterns, the WRs are first identified in the ERA5
reanalysis using the period 1980–2018. The outputs from
this (the definition of the WRs and TCTs, and the surface
energy responses during each patterns, see Figure 1) are

then used to create the pattern-based energy forecast.
The ERA5 WR definitions (500 hPa geopotential height
anomaly centroids) are first used to assign each individ-
ual ensemble member of the forecast to a pattern at a
given lead time, then the frequency of pattern-occurrence
is used to weight a surface response probability distribu-
tion (see orange box in Figure 1). For example, if the
11-member ECMWF forecast is assigned such that three
members are in pattern 1 and eight members in pattern
2, then the resulting surface impact distribution forecast

FIGURE 2 Kernel-density estimates of the normalized

demand-net-wind (DNW) anomalies present during each of

the WRs (left) and TCTs (right) for four European

countries. Black lines in all plots represent the

climatological distribution of DNW anomalies. Data from

December-February, 1999–2010 from ERA5 is used to

create these plots (the common period from the S2S models

used in this study). Note we have chosen to conduct this

work in anomaly space (GW/GW) to make swings in energy

indicators comparable between countries (see Bloomfield,

Brayshaw, & Charlton-Perez, 2020a for further discussion of

this). TCTs, targeted circulation types; WRs, weather

regimes
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is three-parts pattern 1, eight-parts pattern 2. We note
that this output is constructed different to the output
from the grid-point forecast method (which gives a set of
11 possible energy responses), but a probability distribu-
tion is required to represent the large range of possible
energy responses that can be seen for each meteorologi-
cal pattern (see Figure 2). For visualization of the geo-
potential height anomalies associated with each pattern,
see the study van der Wiel et al. (2019).

3.3 | Energy variables from TCT
hindcasts

TCTs are constructed analogously to the WRs (described
above), but by performing the k-means clustering on the
first 14 principle components of set of 28 countries’
national energy data, rather than using a gridded
500-hPa geopotential height variable (Bloomfield,
Brayshaw, & Charlton-Perez, 2020a). The same steps as
outlined in the orange box in Figure 1 can still be
followed: daily-mean energy variables are converted into
a weekly-mean variable and from this a weekly-mean
pattern is assigned (based on the energy anomalies from
all 28 countries). A weekly-mean pattern forecasts can
then be created by combining the probability distribu-
tions of the forecast TCTs.

The benefit of using the TCTs is that they are
designed to have a stronger relationship to the energy
system. TCTs are constructed for both demand and DNW
anomalies. An example of the DNW anomalies for both
WRs and TCTs over four countries is shown in Figure 2
(similar results are seen for demand, not shown). Com-
paring the two columns in Figure 2 (left WR, right TCTs)
reveals a much clearer separation between the distribu-
tions of normalized DNW is seen for the TCTs than for
the WRs, suggesting that, given equal skill in predicting
the occurrence of WR and TCTs, the TCTs method
should produce enhanced skill in predicting the surface
response. Particularly clear distinctions are shown
between the zonal and blocked TCTs. For more details
on the large-scale conditions and energy anomalies asso-
ciated with each WR and TCT, see the study by Bloom-
field, Brayshaw, and Charlton-Perez (2020a).

3.4 | Energy variables conditioned on
pattern-based methods

As discussed in the Introduction section, one potential
benefit of pattern-based forecasting is the ability to high-
light windows of opportunity with enhanced predictive
skill based on the occurrence of particular atmospheric

conditions. Previous work by Bloomfield et al. (n.d.) has
shown that grid-point forecasts of demand and demand-
net-renewables have good skill in week 1 (days 5–12),
however this skill rapidly decreases at longer lead times.
Windows of opportunity for increased skill are sought by
conditioning the grid-point forecasts, based on times
when the models are relatively confident in their predic-
tion of future large-scale dynamical conditions. The
method used is outlined in the green box of Figure 1,
with the example of a conditional WR forecast.

In this study, confidence is defined as 50% or more of
ensemble members agreeing on the weather pattern
(TCT or WR), which would be present in a given week
(i.e., 6 of 11 members for ECMWF or 7 of 12 for NCEP).
This threshold was tested through a sensitivity analysis
and 50% was identified as a good balance between the
skill of the model identifying the dominant pattern, and a
large enough number of forecasts available to make deci-
sions (see Appendix 1 for details of the available amount
of forecasts within windows of different thresholds).

A conditional pattern forecast consists of the grid-
point energy forecasts (weekly-mean energy variables for
all ensemble members) for the occasions when the fore-
cast has a dominant pattern (noting that this dominant
pattern forecast could be incorrect). The skill of this sub-
set of forecasts can then be compared with the full set of
forecasts.

3.5 | Skill metrics

Three verification metrics are used to assess the perfor-
mance of the ensemble forecasts of energy variables. The
first metric assessed is the ensemble-mean correlation
(EnsCorr; Wilks, 2011). This gives users a deterministic
measure of whether the positive or negative anomalies in
forecasts are aligned with observations, and is one of the
simplest measures of skill. The second metric is
the ranked probability skill score (RPSS) of the terciles of
the distribution of the variable. This assesses the perfor-
mance of the forecast when the continuous variable is
reduced to three categories (below normal, normal and
above normal; (Epstein, 1969). The third metric is the
continuous ranked probability skill score (CRPSS). This
assesses the forecast probability distribution of the con-
tinuous variable (Brown, 1974). In all cases, we construct
skill scores referenced to a climatological forecast
(i.e., positive is an improvement on climatology and neg-
ative is worse, with unity corresponding to a perfect fore-
cast). The two probabilistic skill scores give the skill of
the sub-seasonal forecast relative to always forecasting
the climatological probabilities of the events or categories
involved. Providing probabilistic skill scores that are
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benchmarked against climatology shows how much extra
information these methods could provide on a particular
forecasts category compared with what is commonly used
within many sectors at present (particularly at extended
lead times).

An important point to note is that as the hindcasts
typically have fewer ensemble members than operational
forecasts, this tends to limit the skill of reforecast relative
to a true forward-looking forecast. In the case of the S2S
ECMWF forecasts, the real-time forecasts have 51 ensem-
ble members, whilst the re-forecasts have only 11 mem-
bers. To account for this, the method of (Ferro
et al., 2008) is applied to the RPSS and CRPSS.

4 | RESULTS

This section begins by answering the first research ques-
tion: Do pattern-based forecasts offer more skilful
European power predictions than equivalent grid-point
based forecasts? (Section 4.1). The reasons for the given
level of skill are unpacked by further investigating the
relationships to the impacted system (Section 4.2) and
the predictability of the patterns (Section 4.3). Section 4.4
focuses on the second research question: Can pattern-
based methods help to identify windows of opportunity
in which grid-point forecast skill is enhanced/degraded?
The results from the skill assessment in Section 4.1 are
used as a benchmark to look for windows of opportunity
in the grid-point forecast methods.

4.1 | Predicting weekly-mean energy
variables

Figure 3 shows predictive skill of weekly-mean DNW
from the ECMWF model, for weeks 0–3. The grid-point
forecasts of weekly-mean DNW in Figure 3 have very
high skill in week 0 (the mean of days 0–6; EnsCorr
greater than 0.8). This remains high in week 1 but then
drops considerably with increased lead time to 0.4 by
week 2 (days 12–18). In general, more skill is seen in the
grid-point forecasts in Northern and Eastern Europe, this
could be due to the weaker relationship between temper-
ature and demand in winter for the Southern European
countries, or due to the generally lower amount of
installed wind capacity compared with Central and
Northern Europe. The largest gains in skill using pattern-
based method are seen in weeks 2–3, across Central
Europe. Focusing first on week 0, we see that the grid-
point forecast method clearly outperforms the two
pattern-based methods, using WRs and TCTs (see Figure
3, fourth and fifth columns). In forecast week 2 (third

row of Figure 3), the skill of the grid-point and pattern-
based forecasts are quite similar, and often no significant
differences are seen. By week 3 (days 19–25), the WRs
have statistically significant higher skill than the grid-point
forecasts in Central and Northern European countries
(Figure 3p). This suggests that, at longer lead times,
pattern-based methods are capable of providing slightly
more skilful forecasts than the grid-point forecasts. This
increase in skill is however limited to Central and North-
ern Europe for WRs, and to small regions of Central
Europe for TCTs.

When comparing the skill of the TCT and WR
methods, we find the skill in the TCT-based forecasts is
much higher than for the WR-based forecasts in weeks
0 and 1. This is, however, still lower than the skill seen
for the grid-point forecasts. In week 2, the TCT-based
forecasts perform better than the WR-based forecasts in
some regions, but still do not have enough skill to beat
the grid-point forecasts. In week 3, the TCT-based fore-
casts have lower skill than those from WRs.

For brevity, the discussion in this section is limited to
one skill metric, energy variable and S2S model. However,
we note similar results are seen for energy demand (with
slightly higher correlations) and for the more complex prob-
abilistic skill metrics (RPSS and CRPSS) when the compari-
son between grid-point and pattern-based forecast methods
are made. Hence we choose to focus on EnsCorr, as the
purpose of this study is to compare forecasting techniques
not skill metrics. We include results from a range of metrics
in the Appendix 2 for completeness.

The increased skill in demand forecasts when com-
pared with DNW is thought to be due to the models
higher skill for forecasting surface temperatures than
wind speeds at S2S timescales (Büeler et al., 2020). The
differences between demand and DNW forecasts are dis-
cussed further in the study by Bloomfield et al. (n.d.). We
note the generally lower skill scores seen for the NCEP
hindcasts could be due to using the ERA5 reanalysis for
verification, which will be more similar in model set-up
to the ECMWF hindcasts.

The choice of forecast skill metric will be dependent
on the type of decision that is required, therefore we
include all of the plots in Appendix 2 to allow for further
exploration of this. Generally, the grid-point forecasts
from the NCEP model have lower skill than those from
ECMWF (see Bloomfield et al., n.d.) and, for the NCEP
model, the skill gain from using WR-based forecasts is
greater in weeks 2–3 because the quality of the grid-point
forecasts degrades more quickly with increasing lead
time (see Appendix 2). This degradation of the grid-point
forecasts could be influenced by using the ERA5
reanalysis for validation, rather than the NCEP
reanalysis.
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In summary, we have found that in weeks 0–2 the grid-
point forecasts typically equal or outperform the pattern-
based approaches considered, whereas in week 3 the WR
pattern-based method has a modest advantage. The reasons
for the differing levels of performance are investigated in
Sections 4.2 and 4.3.

4.2 | Pattern relationship with impact
variables

A question that could be raised of the TCT and WR meth-
odology is whether the relationship between the patterns
and impact variables (i.e., step 1 in Figure 1, with exam-
ples shown in Figure 2) is adequate to produce high qual-
ity energy forecasts. To test this assumption, we have
assessed the skill present in a perfect model of the
pattern-based methods. This term is used because we
employ a perfect forecasting strategy where the pattern
known to exist in ERA5 on a given date is used as the
pattern ‘forecast’. Figure 4 shows the skill present in a
perfect model is high across multiple skill metrics for the
two methods (see Section 3.5 for a definition of these).

Particularly high potential is seen for demand, and for
areas of Central and Northern Europe. We note that
higher skill is present in the perfect model of TCTs than
for WRs, due to their better representation of the surface
energy conditions during each pattern (see Figure 2). The
relatively low skill of the perfect model seen for RPSS
and CRPSS shows that an avenue for improving these
pattern-based forecasting methods is to investigate
improvements in the statistical relationship between the
patterns and the time series of energy data.

From Figure 4 we can conclude that both WRs and
TCTs have the potential to provide skill at extended lead
times (when skill in grid-point forecasts becomes low) if
their occurrence could be forecast accurately. This sug-
gests that the reduced skill present in Figure 3 when
compared with Figure 2 is due to the models’ ability to
correctly assign the WRs and TCTs.

To take this a step further, the skill of a perfect model
is compared with the skill of the ECMWF and NCEP
weekly-mean grid-point forecasts in Figure 5, showing an
example of DNW over Germany. Until day 6 (3), even
with a perfect forecast of the weekly-mean TCT, the TCT
method is not able to provide more skill than the

FIGURE 3 Weekly-mean ensemble-mean correlation of demand-net-wind (DNW) from December-February, using the ECMWF model

(1996–2016). (a–d) Grid point (GP) forecasts (e–h) pattern-based forecasts using WRs (i–l) pattern-based forecasts using TCTs (m–p) the
difference in GP and WR skill scores (q–t) the difference in GP and TCT skill scores. Stippling in the fourth and fifth column shows no

significant difference between the pairs of skill scores (2000 bootstrapped samples from all available forecasts are used to confirm the

significance with 95% confidence). Tabulated skill scores are available in Appendix 3. ECMWF, European Centre for Medium-Range

Weather Forecasts; TCTs, targeted circulation types; WRs, weather regimes

BLOOMFIELD ET AL. 9 of 16Meteorological Applications
Science and Technology for Weather and Climate



weekly-mean grid-point forecast method for the ECMWF
(NCEP) model respectively. This shows that at very short
lead times we would not expect these pattern-based
methods to outperform the grid-point forecasting strategy
(due to present limitations in the statistical conversion
from pattern to energy variables). Similar results are seen
for WRs, but for longer lead times, as the link between
the WRs and corresponding impact variables is weaker
(see Figure 2 for an example). Figure 5b–d shows the
number of days before both TCTs and WRs can poten-
tially beat the grid-point forecasts of RPSS. We see that
due to the reduced skill level in the NCEP grid-point fore-
casts the pattern-based methods can be useful at earlier lead
times for all countries (see Bloomfield et al. (n.d.) for further
grid-point skill comparisons). If forecast is perfect, then the
TCTs are useful at shorter lead times than the WRs for all
but a few exceptions (notably Norway, where there is a
good relationship between the WRs and surface impacts,
see Bloomfield, Brayshaw, & Charlton-Perez, 2020a). This
provides further explanation for some of the results shown
in Figure 3. We now see that there would not be an expec-
tation of the pattern-based methods to perform better than
the grid-point forecasts in week 0. However, if the TCTs
and WRs could be assigned accurately, there are potential
gains in skill to be had over grid-point forecasts in weeks

1–3, particularly for regions of Central Europe, which have
a diverse range of responses to the WR and TCT patterns.

From an operational forecasting perspective, inves-
ting effort in pattern-based forecasting has the largest
potential for countries in Central Europe, as these coun-
tries have a strong response to multiple TCT/WRs
(Bloomfield, Brayshaw, & Charlton-Perez, 2020a). This
analysis has also shown significant value in developing
alternative impact-based forecasting methods to the tradi-
tional WRs, which could provide useful information for
an average of 3 more days lead-time across the whole of
Europe than traditional WRs.

4.3 | Pattern assignment in S2S models

The percentage of both WRs and TCTs, which are
assigned correctly in the two hindcasts, are shown in
Figure 6. Even in week 0 the forecast models are only
assigning the pattern correctly around ~75% (WRs) to
~85% (TCTs for demand) of the time for the ECMWF
model, with significantly lower percentages seen for
the NCEP model. We note that in lead weeks 0 and 1, the
ECMWF model is able to assign the TCTs better than
the WRs, but by week 2 the assignment rates are similar

FIGURE 4 The perfect predictability of the WR and TCT pattern-based methods for demand (a–f) and demand-net-wind (DNW; g–l),
that is, forecasts using the pattern taken from the ERA5 reanalysis for prediction. Three skill scores are shown, ensemble correlation (top)

RPSS (middle) CRPSS (bottom). The period 1996–2016 is used to match the ECMWF hindcast period. Significant differences are not seen if

the period is changed. See Section 3.5 for skill score definitions. Tabulated skill scores are available in Appendix 3. CRPSS, Continuous

Ranked Probability Skill Score; ECMWF, European Centre for Medium-Range Weather Forecasts; RPSS, Ranked Probability Skill Score;

TCTs, targeted circulation types; WRs, weather regimes
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(this reflects the higher skill-levels seen in TCT-based
forecasts in week 0 and week 1 compared with WR-based
forecasts; Figure 3 right hand column). In the NCEP
model, there is a higher percentage of WRs assigned
correctly than TCTs at all lead times. This could be due
to the reduced skill in the NCEP grid-point energy fore-
casts (see Appendix 2).

From days 10–20, both the ECMWF and NCEP
models show an increased number of correct WR assign-
ments (bottom left sub-panel) compared with the
demand and DNW TCTs (right sub-panels). The number
of correct assignments is also statistically significantly
above the climatological number of correct assignments
(given by the orange lines in Figure 6). The end of this

period corresponds to the lead time range at which the
WRs are able to outperform the grid-point forecasts
(Figure 3, bottom row). The increased number of correct
WR assignments compared with correct TCT assignments
could be due to the models’ ability to forecast large-scale
conditions more accurately than local phenomena at sub-
seasonal lead times (Robertson & Vitart, 2018).

4.4 | Windows of opportunity for grid-
point forecasts

In the previous sections, it was demonstrated that
pattern-based methods offer the potential for modest
enhancements in skill (compared with grid-point fore-
casts) at longer lead times, typically in week 3. In broad
terms, this is consistent with the well-established obser-
vation that forecast error-growth saturates more slowly at
larger spatial scales (see Section 1). An alternative
approach, however, is to use the pattern forecast to con-
dition the grid-point forecast: that is, to only utilize the
grid-point forecast when their ensemble members largely
agree on the predicted dominant large-scale pattern in
the hindcasts.

This section focuses on the NCEP model (where we
know grid-point based forecasts to contain a lower level
of skill than the ECMWF model and therefore has the
most to gain from any pattern-based conditioning). How-
ever, similar results are seen for the ECMWF model (not
shown for brevity). DNW and RPSS are used as a demon-
strative example of skill, though similar results are seen
with all previously discussed skill metrics and for energy
demand (not shown).

Figure 7 shows the skill difference between the stan-
dard grid-point forecast method (see Figure 1) and grid-
point forecasts that have been conditioned so that only
forecasts where at least 50% of the ensemble members
agree on the large-scale pattern that is present are kept. It
is first noted that no significant difference in skill is seen
in week 0 when conditioned on either WRs or TCTs (first
row of Figure 7) as nearly all forecasts fulfil the condition
at this early lead time (i.e., every forecast confidently
picks a single pattern with at least 50% of the ensemble).

In week 1, skill increases in RPSS of ~0.2 are seen
across Europe, maintaining the levels of skill seen in
week 0 if all of the grid-point forecasts are used. The
conditional forecasts are issued for 95% of the WR
forecasts, and 90% of the TCT forecasts. This shows
that by only rejecting a small amount of the grid-point
forecasts (where the uncertainty in the prediction of
the large-scale pattern is very high) a significant gain
in the skill can be obtained. This ability to reject very
poor forecasts (or at least be aware of the high levels of

FIGURE 5 First row: An example for Germany of the lead

time where WR (green) and TCT (purple) methods have the

potential (if perfectly predictable) to provide increased skill

compared with the weekly-mean grid-point forecasts (black).

Second row: The minimum number of days for the WR method to

have the potential to beat grid-point forecasts for the ECMWF

model (left) and NCEP model (right). Third row: As second row for

the TCT method. ECMWF, European Centre for Medium-Range

Weather Forecasts; NCEP, National Center for Environmental

Prediction Climate Forecast System; TCTs, targeted circulation

types; WRs, weather regimes
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uncertainty) is potentially valuable to users making
complex decisions. It is possible for this method to gener-
ate a ‘forecast bust’ if the pattern chosen as dominant is
incorrect. However, this is relatively uncommon, and
using this pattern conditioning typically improves forecast
skill at extended lead times. Although the conditioning is
applied here to the grid-point forecast, a similar selection
could equally be applied to a pattern-based forecast to
increase its skill.

In week 2, the amount of forecasts available for which
the condition is met begins to drop rapidly. Seventy-two
percent of WR-based forecasts are issued, whereas only
52% of TCT-based forecasts are issued. In these windows
of opportunity, however, significant increases in RPSS
are present (again similar to the week 0 values of grid-
point skill for all forecasts). More conditional forecasts
are present for the WR-based method than the TCT-
based method for both the ECMWF and NCEP models.

At weekly-mean timescales, the models are best able
to identify the NAO+ WR, and the zonal demand-only
TCT (with both being assigned correctly greater than 90%
of the time when they are the dominant pattern present
in week 0). This is in agreement with Ferranti
et al. (2018), who also found highest predictability for the

NAO states. This increased predictability could be due to
the zonal TCT and NAO+ WR being associated with
times when the North Atlantic eddy-driven jet is in the
Northern location (Madonna et al., 2017). When the jet is
in the northern location, it is less likely to be weakened
or split, which have both previously been shown to relate
to a reduction in the jet streams persistence and predict-
ability, (Frame et al., 2013).

Both S2S models are able to correctly identify a domi-
nant WR more accurately than a dominant TCT (see
Figure 7, fourth column). This is interesting as the WRs
themselves have little relationship to the energy system (see
fig. 2 of Bloomfield, Brayshaw, & Charlton-Perez, 2020a).
This section has therefore shown that although when used
in isolation a WR forecast can tell you relatively little about
energy-system operation, they can still add value to the
energy-system predictions by providing an insight into the
flow-dependent predictability of the large-scale circulation,
which can condition the grid-point forecasts. An important
caveat here is that the TCT patterns are constructed based
on the national grid-point forecasts, therefore a dominant
TCT forecast is probably associated with relatively low
ensemble spread in the grid-point forecasts. This limits the
potential gain from conditioning unless the statistical

FIGURE 6 Top left: Percentage of correct pattern assignments (hit rate) for the individual members of the ECMWF and NCEP models

when compared with the corresponding hit rate in ERA5, for lead weeks 0–3. Dashed black lines give the range of climatological hit rates

from ERA5. The percentage of correct weekly-mean pattern assignments against lead time is shown for (top right) demand-only TCTs

(bottom left) WRs (bottom right) demand-net-wind (DNW) TCTs. Black, blue and orange lines show the correct assignment rate from

ECMWF hindcasts, NCEP hindcasts and the climatological pattern forecasts from each model (shaded regions constructed from 2000

bootstrapped samples). The lead time represents the first day of the weekly-averaging period. For example, day 5 is the weekly-mean pattern

averaged from days 5–12. ECMWF, European Centre for Medium-Range Weather Forecasts; NCEP, National Center for Environmental

Prediction Climate Forecast System; TCTs, targeted circulation types; WRs, weather regimes
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method of transferring from a TCT pattern to energy anom-
aly can be improved (see discussion in Section 4.2).

5 | DISCUSSION AND
CONCLUSIONS

Sub-seasonal-to-seasonal (S2S) forecasts are becoming
widely used within many impact sectors for decision-
making (White et al., 2017). One of the sectors where the
use of these forecasts is most sophisticated is the energy
sector. Many users are currently using pattern-based
techniques to predict future energy-system evolution, due
to the encouraging research from the meteorological
community showing examples of how models have good
skill in predicting patterns (Büeler et al., 2020; Charlton-
Perez et al., 2018; Ferranti et al., 2015; Ferranti
et al., 2018; Matsueda & Palmer, 2018). However, a quan-
titative assessment of how pattern-based methods com-
pare to using gridded model output to forecast national

energy variables has not been demonstrated for sub-
seasonal timescales within the literature. This was the
main aim of this study, comparing two sets of patterns to
grid-point forecasts: Euro-Atlantic weather regimes
(WRs; Cassou, 2008) and the impact-based targeted circu-
lation type (TCT) method (Bloomfield, Brayshaw, &
Charlton-Perez, 2020a).

The potential utility of both pattern-based methods
for energy-forecasting was shown to be very promising
using perfect forecast experiments, particularly for fore-
casting the ensemble-mean correlation (Section 3.2).
Across all skill metrics, TCTs showed higher potential
because of their closer relationship to energy-system
behaviour (see Figures 2, 4 and 5). However, when
implemented with S2S models, the pattern-based
methods skill was lower than grid-point skill at medium-
range lead times (week 0 and week 1). But, by weeks 2–3,
improvements are seen by using WRs in multiple skill
metrics (Figure 3). Central and Northern European coun-
tries (particularly, France, Sweden, Finland and the

FIGURE 7 Weekly-mean RPSS of demand-net-wind (DNW) from December-February using the NCEP model (1999–2010). (a–c) Grid-
point forecasts for weeks 0–2 (d–f) grid-point forecasts where greater than 50% of hindcast ensemble members agree on the dominant WR

(g–i), as (d–f) for occasions when a dominant TCT is present in the hindcast. (j–l) Difference in skill between all grid-point forecasts and

those conditioned on a dominant WR (m–o) difference in skill between all grid-point forecasts and those conditioned on a dominant TCT.

Stippling in the fourth and fifth column shows no significant difference between the pairs of skill scores (2000 bootstrapped samples used to

confirm significance). Tabulated skill scores are available in Appendix 3. NCEP, National Center for Environmental Prediction Climate

Forecast System; RPSS, Ranked Probability Skill Score; TCTs, targeted circulation types; WRs, weather regimes
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United Kingdom) show the largest potential benefits
from using WR forecasts, whereas for TCT forecasts, the
benefits are largest in Central Europe (particularly
France, Germany, Belgium and the Netherlands).

The TCT method performs better than WRs at short
lead times (week 0 and week 1). However, it is never bet-
ter than using the grid-point based forecasts. Reasons for
this were explored and found to be due to issues with the
models' ability to assign the patterns accurately
(Figure 6). The skill found for WRs at longer lead times is
associated with the window of increased predictability
seen in S2S models from days 10–20.

The potential for windows of opportunity within the
forecasts has been investigated, defined as times when
over half of the ensemble members in a forecast agree on
the pattern assignment (Figure 7). At short lead times
(week 0), conditioning does not increase the forecast
skill, due to low ensemble spread close to the forecast ini-
tiation. The skill present in the conditioned grid-point
forecasts is significantly higher in week 2. This shows
that the combination of pattern forecasts (giving informa-
tion about the large-scale weather conditions) and grid-
point forecasts (able to provide finer details) can be useful
at particular times where increased information about
the distribution of the forecast can be provided with
higher certainty. The conditioning also allows a method
to easily reject forecasts of high uncertainty about the
large-scale flow conditions, which suggest high uncer-
tainty in the surface energy impacts. This could be vital
information for energy modellers taking decisions about
plant operation/maintenance or scheduling for potential
peak demands.

Interaction with energy users has suggested that
more complex, probabilistic skill metrics are more use-
ful for decision-making. However, the models often
have low skill at extended lead times with these more
complex metrics (see figures in Appendix 2). Here we
show how conditioning using either WRs or TCTs can
provide information on metrics that are more useful for
decision-making at extended lead times, and help to
combat the higher uncertainty of forecasts at these time
horizons (Soares & Dessai, 2016). We note that the over-
all performance of the pattern-based methods is limited
at present by the statistical link between the chosen pat-
tern and the national energy data. Future developments
of this methodology could provide enhanced skill, and
potentially show pattern-based forecasts becoming
increasingly beneficial. However, at very short lead
times it will be challenging to beat the skill seen in grid-
point forecasts.

The level of skill found in the grid-point S2S forecasts
declines rapidly with lead time. This reduction in useful
information for decision makers can be aided through

the use of pattern forecasting techniques, particularly if
the patterns are used to condition grid-point forecasts.
We note that the skill assessment completed in this study
is a lower bound for skill. For example, in the European
Centre for Medium-Range Weather Forecasts (ECMWF)
model, we have used an 11-member ensemble from the
hindcasts, rather than the 51-member ensemble from
the operational forecasts that are available. The skill
assessment for the National Center for Environmental
Prediction Climate Forecast System (NCEP) model could
also be inhibited by the use of the ERA5 reanalysis. The
methods shown in this study could be readily extended to
other impact sectors with similar weather dependencies.
Future work could continue to develop the presented
windows of opportunity to include further meteorological
conditioning, such as the state of the stratosphere, or the
state of the Madden–Julian oscillation.
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