Quantitative reduction theory and unlikely intersections

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of Accepted version-Shimcurves19-martin.pdf]
Text - Accepted Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Daw, C. orcid id iconORCID: https://orcid.org/0000-0002-2488-6729 and Orr, M. (2022) Quantitative reduction theory and unlikely intersections. International Mathematics Research Notices, 2022 (20). pp. 16138-16195. ISSN 1073-7928 doi: 10.1093/imrn/rnab173

Abstract/Summary

We prove quantitative versions of Borel and Harish-Chandra’s theorems on reduction theory for arithmetic groups. Firstly, we obtain polynomial bounds on the lengths of reduced integral vectors in any rational representation of a reductive group. Secondly, we obtain polynomial bounds in the construction of fundamental sets for arithmetic subgroups of reductive groups, as the latter vary in a real conjugacy class of subgroups of a fixed reductive group. Our results allow us to apply the Pila–Zannier strategy to the Zilber–Pink conjecture for the moduli space of principally polarised abelian surfaces. Building on our previous paper, we prove this conjecture under a Galois orbits hypothesis. Finally, we establish the Galois orbits hypothesis for points corresponding to abelian surfaces with quaternionic multiplication, under certain geometric conditions.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/99207
Identification Number/DOI 10.1093/imrn/rnab173
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Oxford University Press
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar