Search from over 60,000 research works

Advanced Search

MAP4K4 expression in cardiomyocytes: multiple isoforms, multiple phosphorylations and interactions with striatins

[thumbnail of Open access]
Preview
bcj-2021-0003.pdf - Published Version (8MB) | Preview
Available under license: Creative Commons Attribution
[thumbnail of BCJ-2021-0003R1_Merged_PDF-2.pdf]
BCJ-2021-0003R1_Merged_PDF-2.pdf - Accepted Version (3MB)
Restricted to Repository staff only
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Fuller, S. J., Edmunds, N. S., McGuffin, L. J. orcid id iconORCID: https://orcid.org/0000-0003-4501-4767, Hardyman, M. A., Cull, J. J., Alharbi, H. O., Meijles, D. N., Sugden, P. H. and Clerk, A. orcid id iconORCID: https://orcid.org/0000-0002-5658-0708 (2021) MAP4K4 expression in cardiomyocytes: multiple isoforms, multiple phosphorylations and interactions with striatins. Biochemical Journal, 478 (11). pp. 2121-2143. ISSN 0264-6021 doi: 10.1042/BCJ20210003

Abstract/Summary

The Ser/Thr kinase MAP4K4, like other GCKIV kinases, has N-terminal kinase and C-terminal citron homology (CNH) domains. MAP4K4 can activate c-Jun N-terminal kinases (JNKs), and studies in the heart suggest it links oxidative stress to JNKs and heart failure. In other systems, MAP4K4 is regulated in striatin-interacting phosphatase and kinase (STRIPAK) complexes, in which one of three striatins tethers PP2A adjacent to a kinase to keep it dephosphorylated and inactive. Our aim was to understand how MAP4K4 is regulated in cardiomyocytes. The rat MAP4K4 gene was not properly defined. We identified the first coding exon of the rat gene using 5’-RACE, we cloned the full-length sequence and confirmed alternative-splicing of MAP4K4 in rat cardiomyocytes. We identified an additional α-helix C-terminal to the kinase domain important for kinase activity. In further studies, FLAG-MAP4K4 was expressed in HEK293 cells or cardiomyocytes. The Ser/Thr protein phosphatase inhibitor calyculin A (CalA) induced MAP4K4 hyperphosphorylation, with phosphorylation of the activation loop and extensive phosphorylation of the linker between the kinase and CNH domains. This required kinase activity. MAP4K4 associated with myosin in untreated cardiomyocytes, and this was lost with CalA-treatment. FLAG-MAP4K4 associated with all three striatins in cardiomyocytes, indicative of regulation within STRIPAK complexes and consistent with activation by CalA. Computational analysis suggested the interaction was direct and mediated via coiled-coil domains. Surprisingly, FLAG-MAP4K4 inhibited JNK activation by H2O2 in cardiomyocytes and increased myofibrillar organisation. Our data identify MAP4K4 as a STRIPAK-regulated kinase in cardiomyocytes, and suggest it regulates the cytoskeleton rather than activates JNKs.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/98442
Item Type Article
Refereed Yes
Divisions Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
Interdisciplinary centres and themes > Reading Systems Biology Network (RSBN)
Life Sciences > School of Biological Sciences > Biomedical Sciences
Publisher Portland Press
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar