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1.  Introduction
Earth's radiation belts typically manifest as two toroidal regions of magnetically confined, energetic plasma. 
The outer radiation belt (ORB) comprises a highly dynamic electron population, where fluxes can change 
by orders of magnitudes on minute timescales (Blake et  al.,  1992). The relativistic electrons commonly 
observed in the ORB pose a threat to spacecraft via surface charging and electrostatic discharges between 
internal components (Baker, 2001; Eastwood et al., 2017; Frederickson et al., 1991). As the well-used ge-
ostationary and medium earth orbits overlap with the ORB, there is significant interest in being able to 
accurately model and forecast its electron properties.

There exist a number of radiation belt models, including: Salammbô (Beutier & Boscher, 1995; Boscher 
et al., 2000; Bourdarie et al., 2005); VERB (Versatile Electron Radiation Belt) (Subbotin & Shprits, 2009); 

Abstract  Characterizing the location of the outer boundary of the outer radiation belt is a key aspect 
of improving radiation belt models and helps to constrain our understanding of the mechanisms by 
which the source and seed electron populations are transported into the radiation belts. In this paper, we 
hypothesize that there are statistical differences in the electron distribution function across the radiation 
belt outer boundary, and thus analyze electron flux data from the THEMIS (Time History of Events and 
Macroscale Interactions during Substorms) satellites to identify this location. We validate our hypothesis 
by using modeled electron L* values to approximately characterize the differences between electron 
distribution functions inside and outside of the radiation belts. Initially, we perform a simple statistical 
analysis by studying the radial evolution of the electron distribution functions. This approach does not 
yield a clear discontinuity, thus highlighting the need for more complex statistical treatment of the data. 
Subsequently, we employ machine learning (with no dependence on radial position or L*) to test a range 
of candidate outer boundary locations. By analyzing the performance of the models at each candidate 
location, we identify a statistical boundary at ≈8 RE, with results suggesting some variability. This 
statistical boundary is typically further out than those used in current radiation belt models.

Plain Language Summary  Earth's magnetic field traps highly energetic particles in a 
donut shaped region, referred to as “the radiation belts”. Our work focuses on the outer belt, comprised 
of electrons. Many spacecraft orbit within this region, exposing them to potential damage. To mitigate 
this, the radiation belts must be understood and modeled. The outer boundary is crucial to modeling, 
driving changes in radiation belt activity. The boundary is also important because its location helps us to 
understand which processes form the radiation belts.

In this paper, we analyze electron data measured by satellites to identify the location of the radiation belt's 
outer boundary by using simple statistical methods and machine learning. Our results show that simple 
statistical methods cannot be used to deduce an outer boundary. Using machine learning, we test many 
candidate boundary locations and by quantifying the model performances at each of these locations, we 
are able to identify a statistical boundary location. This boundary is located at approximately eight Earth 
radii away from the planet, which is typically further out than the boundaries currently used by radiation 
belt models, although our analysis suggests the boundary location may be variable.
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STEERB (Storm-Time Evolution of Electron Radiation Belt) (Su et al., 2010a, 2010b, 2011); DREAM (Dy-
namic Radiation Environment Assimilation Model) (Reeves et al., 2012), and BAS-RBM (British Antarctic 
Survey's Radiation Belt Model) (Glauert et al., 2014). One of the critically important aspects of defining the 
boundary conditions for these models is the outer boundary of the ORB (OBORB), since this boundary acts 
as a time dependent source for the simulations.

There are two aspects of specifying this boundary condition. First, the location must be specified either 
in physical or adiabatic invariant coordinates, and secondly the source distribution must be specified for 
the chosen boundary location. Typically, a boundary location is chosen around geosynchronous orbit or 
an equivalent position in adiabatic invariant coordinates, and the source distribution is taken from either 
a model output (e.g., Vette, 1991) or observational data. The model boundary locations used do not neces-
sarily correspond to the physical outer boundary, but instead are chosen to maximize the amount of data 
available to construct the source distribution (more recently this has been data from geosynchronous orbit 
or the apogee of the Van Allen Probes mission). Importantly, there may be physical processes outside of the 
arbitrary, data-maximizing boundary location which cannot be included through these modeling approach-
es. Until radiation belt models capture the entire physics of the radiation belts, they will have difficulty in 
predicting future behavior, since they will be limited to using reanalysis of past behavior rather than being 
able to fully model the dynamics into the future.

Determining the extent of the ORB relative to the location of the tail plasma sheet may help to identify 
mechanisms which may provide the crucial trapped seed population (Jaynes et al., 2015). Since Earth's plas-
ma sheet is known to be an important source of electrons that ultimately form the radiation belt, though the 
precise mechanism of transport is not well understood (e.g., Forsyth et al., 2016, 2014; Sergeev et al., 2015).

Given the importance of the OBORB, and the lack of empirical investigation into its location, we here at-
tempt to identify a statistical boundary location. This investigation is built upon the following hypotheses 
about the ORB and its electron content:

1.	 �The distribution function of the trapped radiation belt electron population differs from the distribution 
function of the untrapped electrons.

2.	 �There exists statistically—or explicitly - a radial limit at which the distribution functions of trapped and 
untrapped electrons will —diverge.

Here, trapped electrons refer to radiation belt electrons which exhibit closed drifting and bouncing trajec-
tories, as opposed to the untrapped electrons, whose drift paths lead to them being lost to different magne-
tospheric regions. Distributions functions in this work are as a function of energy. A further point of note 
is that different distribution functions for the untrapped electrons have been observed between dawn and 
dusk, due to electrons injected in the midnight sector being lost to the magnetopause without reaching 
the dusk sector (Li et al., 2010; Sorathia et al., 2017). Thus, comparing the differences in the distribution 
functions between dawn and dusk should allow us to identify the radial extent of the bound electrons more 
easily.

In Section 2 the data and data processing will be discussed. In Section 3.1 the current definition of what 
constitutes the radiation belt (i.e., where a trajectory has a defined L*) is used to set a benchmark for the 
type of differences between the ORB and untrapped distribution functions. In Section 3.2 the statistical 
radial evolution of the distribution function is presented. In Section 3.3, machine learning is employed as a 
hypothesis testing tool and a statistical boundary location is found for both the dawn and dusk MLT sectors. 
Finally, we will summarize and make concluding remarks in Sections 4 and 5.

2.  Data
Given that this investigation requires data over a large range of radial distances, we use data from the 
(THEMIS) spacecraft (publicly available through NASA's CDAWeb archive). The distribution functions are 
derived from electron flux data from the electrostatic analyzer (ESA) to give us the energy range 10 eV–
30 keV and the solid state telescope (SST) to give us the energy range 30–719 keV (Angelopoulos, 2008; 
McFadden et al., 2008). Data is taken from THEMIS probes A, D and E between 2007/09/27 and 2019/09/29, 
whilst data from probes B and C is taken up till 2010, at which point they were moved to a lunar orbit 
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(Russell & Angelopoulos, 2014). Note that for the L* analysis in Section 3.1, data is only used up until 2017 
due to the availability of OMNI data in the SpacePy L* calculator (Morley et al., 2010). Qualitatively, this 
limitation is very unlikely to affect the results.

This investigation will focus on identifying the equatorial boundary location, and will use data from the 
dawn and dusk MLT sectors. We use the spacecraft's position in GSM co-ordinates to specify dawn and dusk 
data (6 and 18 ± 3 MLT hours), and we use geomagnetically aligned (GEOMAG) co-ordinates to specify data 
from the magnetic equatorial region (Z = 0 ± 0.5 RE). This latter step is done to ensure that the region we are 
sampling corresponds to the magnetic equator in the appropriate coordinate system.

To construct the distribution functions for the electrons we convert the direction-averaged differential elec-
tron (kinetic) energy flux (DEF, eV/cm2 ⋅ s ⋅ sr ⋅ eV) into phase-space density (PSD, s3/m6) as follows:

 


6 2

2
10

2
eDEF mPSD

E
� (1)

where E is the measured energy of electrons (in Joules) and me is the rest mass of an electron.

Figure 1 presents the equatorial plane (left) and radial (right) distribution of the THEMIS data used. From 
this, we note that the data is not evenly distributed, but instead has a radial bias with a maximum ≈ 11.5 RE. 
This distribution is expected given the orbital parameters of the various spacecraft. Two spacecraft (probes 
D and E) have their apogee at ≈ 11.5 RE, meaning that they are traveling most slowly at this region and so 
the density of measurements is higher. Probes B and C have apogee at ≈ 30 and 19 RE, and so their measure-
ments of the inner magnetosphere are more spatially sparse. Probe A has an orbit with apogee at ≈10 RE.

In the following analysis, it will be important to ensure that results are not biased by the radial sampling. To 
address this, we construct ensembles of randomly sub-sampled data. In each of dawn and dusk, we take n 
equally spaced radial bins between 5 and 13.5 RE (the amount of available data drops after this radial limit). 
We find the bin with the fewest samples, m (where m ≈ 3,000 if n = 20). We then construct a new data set 
by randomly sub-sampling m points from every bin 100 times (with replacement). This new data set is now 
uniformly populated in radial distance.

Such ensemble sampling addresses positional biases of the spacecraft measurements. Furthermore, we 
maintain the underlying statistical properties of the PSD distributions in each of the radial bins (Efron 
& Tibshirani, 1986). There also exist biases in the MLT distribution of the data. However, these biases are 
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Figure 1.  The left plot presents the distribution of magnetically equatorial data samples in GSM co-ordinates, with 
a representation of Earth's day- (white) and night-side (black). The right plot presents the same data, but explicitly 
showing the radial distribution.
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much smaller than the radial biases (as can be seen in Figure 1), and the distribution functions are expected 
to show less of a trend with MLT than radius, so we do not mitigate for them.

3.  Analysis
In this section we explore various methods which might be used to identify the location of the OBORB. 
Each method involves comparing the electron distribution function within various radial limits. We look at 
this through the lens of the hypotheses in Section 1. Initially, we use a non-empirical method based upon 
the evaluation of L* (Roederer, 1967) to investigate our hypotheses within the typical adiabatic invariant 
coordinate framework. Following this, we use radial binning to observe the radial evolution of the electron 
distribution function and look for discontinuous behavior signifying the OBORB. Lastly, we employ ma-
chine learning methods as a tool for searching for the radial position of the OBORB through a hypothesis 
testing approach (though not the same hypotheses as in Section 1).

3.1.  L* Analysis

Our study focuses on finding the radial extent of the ORB in real space (cf. adiabatic invariant space) by 
analyzing positional differences in the electron distribution function. This naturally leads to using L* to 
classify whether data is inside or outside of the radiation belts. L* is a modeled property of magnetically 
trapped particles, which is used to define the extent of the radiation belts (Roederer, 1967; Roederer & Le-
josne, 2018; Roederer & Zhang, 2014). In a dipole field, the modeled L* corresponds to the radial distance of 
the point where the drift path of an electron intersects the magnetic equator. Employing L* as a definition 
of the radiation belts themselves allows us test our first hypothesis - that the electron distribution functions 
within and without the ORB differ. We stress that this is only an approximation for the radiation belts, since 
it relies on empirical field models (L* is not a measured quantity), which have significant disparities (see 
e.g., Albert et al., 2018; Thompson et al., 2020), and as such we do not use L* to try to quantify the location 
of the OBORB.

To incorporate the information L* provides (whether or not the electrons are on a closed drift-path), we 
employ seven magnetic field models to determine L* for a given datapoint - calculated using the SpacePy's 
wrapper of the IRBEM library (Morley et al., 2010; Roederer & Zhang, 2014; Albert et al., 2018; Thompson 
et al., 2020) for 90° pitch-angle electrons (we comment on pitch angle in the discussion section). These mod-
els are: T89 (N. Tsyganenko, 1989); OPQuiet (Olson & Pfitzer, 1974); T96 (N. A. Tsyganenko, 1995); OSTA 
(Ostapenko & Maltsev, 1997); T01Quiet (N. A. Tsyganenko, 2002); T01Storm (N. A. Tsyganenko et al., 2003), 
and T05 (N. A. Tsyganenko, 2005). These models range from being analytic (OPQUIET) to quite heavily 
solar wind/geomagnetic index parameterized (T05). Given the seven models used, we specify that so long 
as at least four models returns a finite L* value, the datapoint corresponds to a trapped drift trajectory for at 
least some of the electrons measured, and is therefore within the radiation belts. This choice was informed 
by Thompson et al. (2020), who choose three models but suggest that using more models can reduce mod-
el-specific biases.

Figure 2 presents the results of the L* analysis. We have employed the sub-sampling method described in 
Section 2, with n = 20, to ensure that there is no sampling bias in the results. In panel of Figure 2(a), the L* 
occurrence distribution and median L* values (based on the 4-model agreement criteria) are plotted over 
the range of radial distances. Below 8 RE, > 90% of the data is located within the radiation belts (in that it 
has a valid L* value in four of the seven magnetic field models). The occurrence fraction of L* values show 
a monotonically decreasing relationship with increasing radial distance (except>12 RE), in agreement with 
theory. We speculate that the increasing occurrence above 12 RE and the decreasing median L* values above 
11.5 RE are spurious and represent some of the issues in trying to solely use modeling to define the OBORB 
(further issues with using current magnetic field models are highlighted in Albert et al., 2018).

Figures  2(d) and  2(e) present comparisons between dawn/dusk and inside/outside of the ORB (on the 
basis of L* being defined or not). Comparing vertically (i.e., panels (b) with (d), and (c) with (e)) shows the 
difference between dawn (top) and dusk (bottom). There is a clear enhancement of the ≈ 10 keV seed pop-
ulation electrons (Jaynes et al., 2015) at dawn which is not present at dusk. There is also a depletion of the 
≈ 1 keV source population electrons (Jaynes et al., 2015) which only appears outside of the radiation belts. 
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The medians of the THEMIS SST data (>30 keV), follow a power-law-type distribution as other works have 
found (e.g., Whittaker et al., 2013; Zhao et al., 2019). Comparing between inside and outside of the radiation 
belts, the main differences (aside from the aforementioned depletion of source population electrons) are the 
typically more variable PSDs at energies ≲100 keV outside the belt compared to inside. In contrast, the PSDs 
above this energy are much less variable outside the belt compared to inside. The distribution functions also 
have a shallower gradient and more variability inside of the radiation belt, highlighting a considerably more 
enhanced electron population.

3.2.  Simple Radial Analysis

To investigate the OBORB, we calculate the median and interdecile (i.e., 10 to 90th percentile) range of data 
in nine radial bins between 5 − 13.5 RE. These results are presented in Figure 3. These distributions are cal-
culated using the random sub-sampling technique described in section 2, with n = 9, to ensure comparable 
statistics between each of the bins.

We find significant radial evolution in both the dawn and dusk distribution functions. Both display flatten-
ing over the mid-range energies, suggesting either wave-particle interactions (Meredith et al., 2020), or the 
plasma sheet source (Kurita et al., 2011). The notable difference between dawn and dusk is the pronounced 
bulge in the dawn distribution at ≈ 10 keV, mirrored in the interdecile ranges of the dawn data. We observe 
that the dawn and dusk distributions diverge with increasing radial distance up to r ≈ 9.7 RE, after which 
they converge to similar distributions. At low radial distances, the dawn and dusk data may be more consist-
ent because most of the data is inside the radiation belts, and equivalently at the higher radial distance most 
of the data is likely to be outside of the radiation belts. We observe that the dawn data exhibits the elbow at 
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Figure 2.  Panel (a) presents the radial distribution of datapoints where L* is defined (i.e., the electrons are on closed field lines) normalised per radial bin, as 
well as the median L* value in each bin. The following box-plots present the per-energy-channel distribution and median trend-line of PSD at dawn and dusk, 
for data with and without a defined L*, respectively. These plots have a vertical line separating the ESA and SST instrument measurements. The box-plots 
represent dawn (b and c) and dusk (d and e), with the alternate line representing the median of the other for comparison.



Earth and Space Science

lower radial limits, and suggest that this may be the contribution of untrapped electrons. This is supported 
by the dusk distribution converging to the enhancement as the radial limit is increased beyond the expected 
limit of the OBORB and trapped electrons.

The distribution function at 5.0–5.9 RE is very different in form from that at 12.6–13.5 RE, but the change in 
form occurs gradually, with no obvious discontinuity as a function of radial distance. This may imply that 
either there is not a hard boundary, or that the boundary location is highly variable. By not finding such a 
marker, we infer that this simplistic approach isn't best suited to locating the OBORB.
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Figure 3.  The median and interdecile range of PSD in dawn and dusk, binned by radial distance. The black vertical line represents the break between data 
from the ESA and SST instruments.
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3.3.  Machine Learning Analysis

With the previous method unable to find a clear radial distinction between electron populations, we now 
employ machine learning. We approach this much like hypothesis testing, a variety of radial limits are 
proposed as potential OBORBs (hypotheses) and empirically tested to determine which is most appropriate 
(the validity of an OBORB radial location, and how we might determine it, are discussed below). We con-
strain the data to the SST energy channels before applying machine learning, ensuring the results are not 
biased by lower energy particles, strongly affected by the E × B drift (Roederer & Zhang, 2014).

Our empirical analysis for a single set of proposed dawn and dusk radial limits is as follows:

1.	 �Make a hypothesis by selecting a candidate radial limit for the OBORB (e.g., 7 RE in the dusk or dawn 
sector).

2.	 �Label each datapoint with a 0 if the measurement was made inside of the candidate radial limit, else 
label it with a 1. These class labels form the targets that a machine learning model (explained later in the 
text) will try to predict on the basis of the electron distributions.

3.	 �Combine the dawn and dusk labeled data into a single data set.
4.	 �Provide a machine learning model each of the electron distribution functions as features (i.e., what the 

model will use to form a prediction). Each input is a one dimensional array of the values of PSD at each 
energy.

5.	 �Train the machine learning model for the given set of input features (electron distribution functions) 
and targets (whether the data is inside or outside the chosen radial limit). The training set corresponds 
to 80% of the data, allowing for model performance to be quantified on an un-seen test set (the remaining 
20% of the data).

6.	 �Quantify the model performance of estimating whether a datapoint is inside or outside the chosen radial 
distance using un-seen electron distribution functions from the testing set. Metrics quantify the differ-
ences between the model-predicted class labels (0/1, inside/outside) with the class labels prescribed by 
the boundary location choices.

Note that the neither the radial boundary locations, nor the radial locations of the measurements are pro-
vided to the machine learning model. Instead, the model tries to improve classification accuracy by infer-
ring differences in the input features (PSD at each energy) between each set of class labels. By considering 
how well the model performs, we are assessing how much information is present in the electron distribu-
tion functions about the chosen radial distance. As electron distribution functions are expected to show the 
greatest difference either side of the OBORB, this in turn provides a measure for how good an approxima-
tion the chosen radial distance is for the OBORB. By, “greatest difference” we are referring back to our initial 
hypothesis that the electron distribution functions of trapped electrons are different to those of untrapped 
electrons.

Each model used in the following analysis is a gradient-boosted (Friedman, 2001) ensemble of decision 
trees (Belson, 1959) implemented using the LightGBM framework for Python (Ke et al., 2017). For each set 
of hypothetical boundary locations, a new model is trained, but the model architecture remains the same. 
Each ensemble is comprised of 256 decision trees (chosen to exceed suggestions from Oshiro et al., 2012, 
since LightGBM is cheap to run), which each contain 32 leaf nodes. Each model is gradient boosted using 
the dart algorithm (Rashmi & Gilad-Bachrach, 2015), where gradient boosting is a method of constructing 
the ensemble such that each subsequent decision tree in the ensemble is trained to correct for mis-classified 
predictions from the previous decision trees.

To test a large range of hypotheses we implement the above method in a training loop, stepping through 
each combination of dawn and dusk radial locations between 6 to 12 RE (in increments of 0.2 RE). By investi-
gating the model performances over this range of plausible OBORB locations, we can assess the existence or 
otherwise of an OBORB, and whether the location can be constrained to a certain radial distance range. The 
existence of an OBORB can be judged by the magnitude of the quantified model performances; if models 
perform well, then it suggests that an OBORB or OBORB region exists. Once validated, the location of the 
OBORB can be constrained by comparing the relative skill of the different models and seeing if a particular 
set of boundary locations leads to models which perform better. Where we find radial limits with the best 
model performance, we know that these locations correspond to a split which maximizes the differences in 
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the distribution function data between the two classes (i.e., inside/outside, 0/1). In our context, this would 
represent the statistical OBORB.

Before detailing the results, we present the distribution of data obtained by our various radial limits. Fig-
ure 4 presents the proportion of data labeled as “inside” at each dawn and dusk limit. There is a noticeable 
increase in the fraction of data within the radial limit at ≈11.5 RE. This is due to the radial bias in the data 
distribution presented in 1. Generally the central regions of the plot have balanced data distributions. This 
distribution will be important in evaluating the performance metrics to ensure that they are not biased by 
having uneven class distributions.

To quantify our model performances, we employ a variety of binary classification metrics: Accuracy, Gilbert 
Skill Score (GSS), G-mean, F-measure and Critical Success Index (CSI) (Gilbert, 1884; Kubat et al., 1998; 
Lewis & Gale, 1994). These metrics (aside from accuracy) have been chosen because they are designed to 
take into account class imbalances. Since different metrics focus on quantifying different aspects of pre-
dictive performance (see how the different metrics are constructed in Appendix A), we present the results 
of multiple metrics to get a more complete view of the model performances. We also consider the inverted 
F-measure and CSI to account for the fact that they only consider one correct classification label (name-
ly, the true positive predictions, ignoring the true negative predictions), and finally an aggregated metric 
comprised of the geometric mean of results from all metrics used. These metrics can all be derived from a 
confusion matrix of the results of our binary classification. See Appendix A for further details of the metrics 
and how they relate to confusion matrices.

Figure 5 presents the results of our machine learning analysis. Each panel presents a 2D histogram of the 
performance of a metric at each combination of dawn and dusk boundary conditions. Over-plotted are well 
as six contours evenly spaced between the 70 and 100th percentiles of the data. By all the metrics used, 
there are models which perform relatively high for at least a subset of the hypothesized boundary locations. 
The GSS has the lowest numeric model performance, but still has a constrained region of performance 
exceeding 0.7 (a score of 0 would represent no-skill and −1/3 is the lowest possible value). Aside from the 
GSS, each metric is constrained to the range 0–1. If our approach were flawed, and machine learning was 
not a suitable tool, we would expect to find that the models did not perform especially well at any location. 
Seeing as there are high-performing models (by each metric), we infer this as validation of our machine 
leaning approach. The contours of model performance presented allow us to constrain the locations of best 
performance, which we attribute to the OBORB location. However, before we analyze these contours we 
will discuss the issue of class imbalance.
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Figure 4.  A 2D histogram presenting the fraction of data classed as inside the radiation belts, as determined by various 
radial limits. The radial limits are independently chosen for dawn and dusk.
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Of the traditional metrics used, it appears that the GSS and G-mean met-
rics perform most robustly against the class imbalance, as can be seen 
by the lack of bias towards the upper right, or lower left areas (where 
the class imbalance is most pronounced). The average of the metrics 
also provides a class-balanced representation of the results. One thing 
to note from these results is the similarity between the accuracy, F-meas-
ure and CSI. This likely originates from the algebraic similarity between 
the definitions of these metrics (see Appendix A). By using the inverted 
versions of these metrics we address the class imbalance when we take 
our average of the results, and observe how sensitive the results are to 
the class imbalance (the metric behavior completely changes by focusing 
on a different true class prediction). Accuracy is inadequate as a metric 
when used on imbalanced data, since it is easily biased. This bias can 
be demonstrated in the following hypothetical case. If one has 100 data 
points, split into two classes (0 and 1), with 99 points falling in the 0 class. 
Then a model trained on this data may obtain a predictive accuracy of 
99% by predicting everything to be in the 0 class. If it is important to be 
able to correctly predict the other classification, then this model will have 
no skill, despite the high accuracy.

Whilst we present all of the metric results in Figure 5, for convenience we 
will focus the remaining discussion on the results of the average of the 
metrics, as this encapsulates the trends between all of the metrics. We ob-
serve a bounded region of best-performance between ≈ 6.9–9.1 RE in the 
dawn sector and ≈7.0–9.3 RE in the dusk sector. The contours show sharp 
decrease in the quantiles of performance outside of this area.

4.  Discussion
For the sake of a clear methodology, we have generally made few com-
ments on the results we've found. Here, we will start by discussing the 
machine learning aspect of this work, since it yields the most interesting 
results, and subsequently compare with the features found in our simple 
radial analysis.

In the machine learning analysis, we employed a fairly simple hypothesis 
testing approach to investigate various radial boundary locations for the 
OBORB. Our results suggest that a boundary exists, though its location 
may be highly variable. Variability in the boundary location may origi-
nate from myriad sources: pitch-angle dependence; energy dependence, 
and solar wind/geomagnetic activity. The pitch-angle of electrons is less 
likely to affect our results due to the focus on the dawn and dusk regions 
rather than day or night. For these latter MLT sectors, there is a strong 
pitch-angle dependence of the drift shell being observed at a given radial 
location (see figures in Roederer & Lejosne, 2018), which act in opposing 
directions between day and night. As such, this effect is much reduced 
in our data, though certainly some of the variability in the results is due 

to this. For electrons of different energies, there are magnetospheric processes that act preferentially. Thus, 
for each energy level there may be a different radial location corresponding to the last closed drift shell. By 
limiting our machine learning experiment to only the higher energies, we reduce the energy dependent 
effects. Though, as discussed below, we may still observe some of these effects even in our more limited 
energy range. Solar wind and geomagnetic activity are likely to have a significant effect on the OBORB, 
since such activity leads to large-scale reconfiguration of the magnetospheric topology and geometry. As 
this study represents (to our knowledge) the first empirical constraint on the OBORB location using in situ 
data, we do not account for activity, leaving such considerations for future work much in the same way as 
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Figure 5.  2D histograms presenting the machine learning model 
performance, through various metrics. The average of the metrics 
presented in panel h represents the geometric mean of the metrics 
presented in panels (a–g). Over-plotted are six contours between the 70 
and 100th percentiles of the data, used to draw attention to the regions of 
best performance.
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early research into the magnetopause location (Fairfield, 1971). By doing so, our results likely represent a 
quiet-time or modal OBORB location. One final consideration is cross-species contamination of the elec-
tron flux by protons, which may increase the lower energy channel's PSDs and add additional variability to 
our results (Turner et al., 2012, 2013).

From our results we infer that the lack of parameterizing by solar wind/geomagnetic activity is the domi-
nant factor for the variability in our boundary location, as activity will move the boundary physically, rather 
than softening it as the pitch-angle and energy dependence do. We infer this by the high skill scores (relative 
to the maximum value) which are distributed over a large range of potential radial limits. If instead, there 
was a softer boundary (i.e., a slow transition between the two characteristic distribution functions), we 
might still expect to see the smooth variation in the metric scores, but we would typically expect the quan-
titative values to be lower (e.g., all less than 0.5), as the models would find it more difficult to characterize 
the subtle differences in the slowly changing distribution functions.

Looking specifically at the average (geometric mean) of the metrics in Figure 5h, the distribution is shifted 
slightly in favor of a larger radial limit at dusk than dawn, but is otherwise quite a symmetric shape. The 
ovoid shape of the contours suggest a tendency for the boundary to favor similar values at dawn and dusk, 
though the implicit variability highlights that this may be only a weak tendency (taking the contours as the 
extrema of the variability, the dawn radial limit can be ±2 RE compared to dusk and vice versa the variability 
can be ±2.5 RE).

The dawn-dusk asymmetries observed might be explained by similar dawn-dusk asymmetries in the mag-
netosphere (Haaland et al., 2017; Staples et al., 2020; Walsh et al., 2014). As we have excluded the lower 
energy particles from this portion of analysis, we do not expect this asymmetry to be primarily due to E 
× B drift, since the curvature and gradient drifts are energy dependent and hence will dominate over the 
electric field drift (though some recent works have shown that the electric field may still contribute: Sillan-
pää et al., 2017; Califf et al., 2017). Instead, we speculate that this effect is more likely to be due to asym-
metries in the (partial) ring current, whose effect is to increase the magnetic field strength at larger radial 
distances. This causes the electrons to follow the field and drift further out because of the gradient drift 
experienced. The sense of the dawn-dusk asymmetry suggests it is not simply the result of the algorithm 
identifying the magnetopause rather than the OBORB, the magnetopause can be compressed to below 8 
RE, but this happens much more frequently at dawn than dusk (Staples et al., 2020). Whilst there may be 
some contamination of the data due to sampling the magnetopause or solar wind, we infer that this is neg-
ligible, since electron populations (and hence their distribution functions) are very different. It is expected 
that the difference between electron distribution functions inside of the magnetosphere and those in the 
magnetosheath or solar wind is much bigger than the differences between distribution functions inside and 
outside the radiation belt. A more easily identifiable dichotomy of distribution functions would be picked 
out more significantly by the algorithm and so we assert that the boundary identified by the algorithm is not 
the magnetopause, but the OBORB.

Our identification of the OBORB at ≈8 RE is typically larger than the values currently used in radia-
tion belt modeling (e.g., Subbotin & Shprits,  2009; Shin & Lee,  2013; Glauert et  al.,  2014,  2018; Ozeke 
et al., 2014, 2018), suggesting that these modeling efforts are potentially missing radiation belt phenomena 
from the outer regions. Other empirical evidence, such as that in Sivadas et al. (2019), also support an OB-
ORB location beyond the currently used limits (9–12 RE in their case). The OBORB being located further out 
opens up the possibility for smaller scale magnetotail behavior (e.g., less severe substorms) to inject particles 
into the radiation belts, since they would not have to penetrate to such low L-shells. Such injections could 
lead to additional variability in the radiation belts (Jaynes et al., 2015; Turner et al., 2017) and to enhanced 
chorus wave activity in the outer regions (Meredith, 2002).

In Figure 3, we observed a flattening of the PSD at the mid-range energies and speculate that this is due 
to wave-particle interactions (WPIs). Given the energies of these electrons (10–30 keV) and their location 
(equatorial region, large radial distance) it is likely that whistler-mode chorus waves are the cause (Omura 
et al., 2008; Li et al., 2011, 2010; Meredith et al., 2020). The flattening occurs asymmetrically between dawn 
and dusk, with dawn being affected at lower radial distances. Meredith et al. (2020) present results show-
ing that both lower- and upper-band chorus have a large dawn-dusk asymmetry. These results also show 
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that specifically the lower-band chorus intensity is high at the large radial distances where we continue to 
observe the flattening of the distribution. Our presented results extend to larger radial distances than Mer-
edith et al. (2020) or Li et al. (2010), into regions close to the magnetopause. Due to the sparseness of data 
and research into WPIs in this region, we cannot speculate on whether or lower-band chorus remains the 
dominant wave affecting the electrons but these results suggest that more investigation may be required.

5.  Conclusions
This study provides the first in situ, empirically constrained location for the outer boundary of the ORB us-
ing THEMIS ESA and SST measurements. Characterizing this boundary location accurately is an important 
aspect of radiation belt modeling, as it forms a time-varying source of electrons.

By applying simple statistical techniques, we observe significant radial evolution of the distribution func-
tions, highlighting the intrinsic differences between the trapped (radiation belt) and untrapped electron 
populations. However, this approach did not yield a clear boundary location, instead showing a smooth 
transition between the two states. Such a transition signifies either a soft boundary, or a boundary with 
significant variability.

We employ machine learning (specifically, ensemble decision tree classification) in a hypothesis-testing 
framework, to assess whether there exists an identifiable change in electron distribution functions and 
hence outer boundary to the ORB, and where it may be located. The data set was converted into 900 binary 
classification datasets, where data was labeled as either inside or outside of specified dawn and dusk radial 
limits (our hypothesized boundary locations). 900 machine learning models were then trained to learn this 
classification. Where the models perform better, we infer that our choices of boundary locations coincide 
more closely with identifiable changes in the electron distribution functions and hence the true statistical 
boundary location. By aggregating a series of metrics (many designed specifically for imbalanced datasets) 
we find a region of best performance between ≈6.9–9.1 RE in the dawn sector and ≈7.0–9.3 RE in the dusk 
sector.

This work presents a novel methodology for identifying the OBORB location, and opens up future research 
directions in parameterizing the boundary location by solar wind and/or geomagnetic conditions. Our cur-
rent results better constrain the statistical location of the OBORB and can be incorporated into the con-
struction of radiation belt models, ensuring that they contain the physical processes of the radiation belts, 
and allowing future analyses to more appropriately capture the dynamics of injection events and how they 
influence the behavior of the outer ORB.

Appendix:  A Metrics
All of the metrics used in this study can be derived from a confusion matrix. A confusion matrix is made 
up of True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). How these 
correspond to model predictions can be seen in Table A1.

These relate to the following three commonly used, intermediary metrics and to HR, which is used as a cor-
rection factor in the Gilbert Skill Score to account for the random chance of correctly categorizing a sample.

BLOCH ET AL.

10.1029/2020EA001610

11 of 14

Model prediction

0 1

True

Value

0 TP FN

1 FP TN

Abbreviations: FN, False Positives; FP, False Positives; TN, True Negatives; TP, True Positives.

Table A1 
A Symbolic Representation of a Confusion Matrix, With Acronyms TP, TN, FP, FN Referring to the Different Predictions 
True Positives, True Negatives, False Positives, and False Negatives, Respectively
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


TPprecision
TP FP

� (A1)



TPrecall

TP FN
� (A2)




TNspecificity
TN FP

� (A3)

 


  
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We now define the metrics, and also present simplifications of the expansion into forms using only the four 
values from the confusion matrix.
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
 

TPCSI
TP FN FP

� (A9)

The F-measure is the harmonic mean of the precision and recall and the G-mean is the geometric mean 
of the recall and specificity. On top of the proposed metrics, we also consider their values when the class 
labels are inverted, allowing us to investigate the robustness to the class imbalance (i.e., TP ↦ TN and FN ↦ 
FP and vice versa). Of metrics defined in Equations 6–10, we note that only the F-measure and CSI will be 
affected by this change, and so these are the only additional metric scores calculated.

Data Availability Statement
THEMIS data is publicly and freely available in CDF format at: https://cdaweb.gsfc.nasa.gov/pub/data/
themis/. We specifically use the “psef_en_eflux” from the ESA and SST data, and the “pos” and “pos_gsm” 
from the STATE data. All of these data were obtained for probes A-E.
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