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Abstract
This paper explores the role of balance relationships for background-error
covariance modelling as the model’s grid box decreases to convective scales.
Data assimilation (DA) analyses are examined from a simplified convective-scale
model and DA system (called ABC-DA) with a grid box size of 1.5 km in a
2D 540 km (longitude), 15 km (height) domain. The DA experiments are per-
formed with background-error covariance matrices (B) modelled and calibrated
by switching on/off linear balance (LB) and hydrostatic balance (HB), and by
observing a subset of the ABC variables, namely v (meridional wind), 𝜌 ′ (scaled
density, a pressure-like variable), and b′ (buoyancy, a temperature-like variable).
Calibration data are sourced from two methods of generating proxies of fore-
cast errors. One uses forecasts from different latitude slices of a 3D parent model
(here called the latitude slice method), and the other uses sets of differences
between forecasts of different lengths but valid at the same time (the National
Meteorological Center method). Root-mean-squared errors computed over the
domain from identical twin DA experiments suggest that there is no combi-
nation of LB/HB switches that give the best analysis for all model quantities.
However it is frequently found that the B-matrices modelled with both LB and
HB do perform the best. A clearer picture emerges when the errors are exam-
ined at different spatial scales. In particular it is shown that switching on HB
in B mostly has a neutral/positive effect on the DA accuracy at ‘large’ scales,
and switching off the HB has a neutral/positive effect at ‘small’ scales. The divi-
sion between ‘large’ and ‘small’ scales is between 10 and 100 km. Furthermore,
one hour forecast-error correlations computed between control parameters find
that correlations are small at large scales when balances are enforced, and at
small scales when balances are not enforced (ideal control parameters have zero
cross-correlations). This points the way to modelling B with scale-dependent
balances.
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1 INTRODUCTION

Balance constraints of one form or another have been
used to help formulate data assimilation (DA) problems
for many years, e.g., Lorenc (1981); Derber and Bouttier
(1999); Gao et al. (1999); Berre (2000); Ingleby (2001);
Fisher (2003); Ge et al. (2012); Tong et al. (2016). Bal-
ance constraints are useful for a number of reasons,
especially (though not exclusively) when used with vari-
ational and hybrid schemes. Firstly, they are used to
dampen damaging unbalanced motion produced spuri-
ously as a by-product of the analysis procedure. This is
done by building them into the formulation of the static
background-error covariance matrix, B (Parrish and Der-
ber, 1992; Derber and Bouttier, 1999; Gauthier et al., 1999;
Bannister, 2008), enforcing them as an extra constraint
in the cost function (a Jc term) (Hu et al., 2006; Kleist
et al., 2009), and applying them post analysis explicitly
or implicitly (Courtier and Talagrand, 1990; Lynch and
Huang, 1992; Bloom et al., 1996; Potvin and Wicker, 2013).
Secondly, when a balance constraint is imposed strongly,
it reduces the number of degrees of freedom that a DA
problem has to deal with. Thirdly, and specifically for vari-
ational and hybrid DA schemes, balance conditions guide
the definition of the control variables, which are assumed
to be mutually uncorrelated, thus defining a model of B
(Bannister, 2008; Song and Kang, 2019).

The choice of balance conditions (if any) relevant to
a particular DA problem depends upon the properties of
the flow, which in turn depend on the fluid’s geographi-
cal location and on the scales of motion considered. For
instance, geostrophic or hydrostatic balances – dominant
in flows of small Rossby numbers typical of the large-scale
extratropical free troposphere – are not always well suited
to regimes that have a potentially high Rossby num-
ber – for example, tropical or small-scale flows (Sun, 2005;
Sun et al., 2014; Yano et al., 2018), rain (Caron and Fillion,
2010), convection (Vetra-Carvalho et al., 2012), or high
flow curvature (Fisher, 2003). Despite these concerns, bal-
ance relationships like the linear and nonlinear balance
equations, and hydrostatic balance, whether in dynami-
cal or regressed forms, are associated with the formulation
of B for km-scale DA systems, for example, Barker et al.
(2004); Honda et al. (2005); Brousseau et al. (2011); Bal-
lard et al. (2016); Heng et al. (2020); Xu et al. (2020). As
models have smaller and smaller grid lengths, this leads to
obvious questions on whether it is an optimal, efficient, or
appropriate use of balance conditions in such small-scale
systems, and whether they can be dropped or replaced
with alternative balance conditions which are more appro-
priate at convective scales. To date, there have been few
systematic studies of ‘turning off’ balance conditions in
B of variational or hybrid DA systems. There have been

a number of studies that appear to have compared the
performance of 3D-Var systems through a change of vari-
ational control variables from a set that exploits balance
operators to a set that does not (Xie and MacDonald, 2012;
Zakeri et al., 2018; Shen et al., 2019; Thiruvengadam et al.,
2019; Wang et al., 2020). These studies did find benefits
of the change but the change had been made at the same
time as a change of momentum control variables from
streamfunction and velocity potential-based variables to
zonal and meridional wind-based variables. It remains an
open question on which balance conditions, if any, remain
appropriate for use with convective-scale DA.

This paper revisits the problem of the use of geophys-
ical balance to model B as used in variational and hybrid
schemes when applied to midlatitude flows that con-
tain small scales that are expected to have a considerable
amount of unbalanced flow by their nature. The model
used for most of this study is a high-resolution (1.5 km grid
length) version of the simplified ABC model (Petrie et al.,
2017), and its variational DA system, ABC-DA (Bannis-
ter, 2020), but some results use ensemble forecasts from
a 1.5 km grid length version of the Met Office’s Unified
Model (UM) for a limited-area domain over the southern
UK.

The structure of this paper is as follows. In Section 2 we
briefly describe the ABC-DA system. In Section 3 we sum-
marise the balance relationships considered in this study.
In Section 4 we review how they are used in ABC-DA. In
Section 5 we show how two populations of forecast-error
proxies have been generated, which are used to calibrate
our B matrices. In Section 6 we discuss the potential prob-
lems resulting from inappropriate balance conditions in B
and demonstrate that such problems are evident in some
sample data from the convection-permitting UM and ABC
systems. In Section 7 we define and show the ABC-DA
experiments performed with different balance conditions
applied to B. In Section 8 we relate these results to the rea-
soning made earlier in the paper. Finally in Section 9 we
summarise our findings, discuss the possible limitations
of this study, and outline further work that could be done.
In addition, The Appendix summarises the balance condi-
tions for the Euler equations. Even though our focus (for
simplicity) is the ABC-DA system, the conclusions of this
paper will be of interest to operational centres, especially
those that use 3D/4D-Var and hybrid methods.

2 THE ABC-DA SYSTEM

The ABC model (Petrie et al., 2017) is a set of simpli-
fied fluid equations which were designed to permit speedy
research into convective-scale DA. They are modified ver-
sions of the compressible Euler equations, designed to
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exhibit balanced motion at large scales, but unbalanced
motion on smaller scales. The equations operate on a 2D
longitude/height plane (x/z); they are partly linearised
(advection terms and the mass continuity equations
remain nonlinear); the Brunt–Väisälä frequency is taken
to be a constant, A (to control gravity wave frequencies),
the advection terms and the mass divergence terms are
modulated by a parameter 0 < B ≤ 1 (to control acoustic
wave speeds), and the equation of state is simplified to
relate pressure and density perturbations via an inverse
compressibility coefficient, C. The result is a set of five
prognostic equations for zonal wind, u, meridional wind,
v, vertical wind, w, scaled density perturbation, 𝜌 ′ = 𝜌′∕𝜌0
(where 𝜌0 is reference density), and buoyancy perturba-
tion, b′ = (g∕𝜃R)𝜃′ (where g is the acceleration due to
gravity, 𝜃R is the reference potential temperature, and 𝜃′ is
the potential temperature perturbation). The equations are
given as equation (15) of Petrie et al. (2017). Additionally,
pressure increments may be diagnosed from the simpli-
fied equation of state, p′ = C𝜌′. The equations are dry, but
work is currently under way to include simplified moist
processes. A is the pure gravity wave frequency and

√
BC is

the pure small-scale acoustic wave speed. The parameter B
was introduced to slow the speed of the acoustic waves so
that the equations can be solved using an explicit scheme
(the split-explicit forward-backward scheme; Cullen and
Davies 1991). In this paper, the parameters are set as fol-
lows: A = 0.01 s−1, B = 0.01, C = 105 m2s−2, and the Cori-
olis parameter is f = 10−4s−1. The domain of the model is
540 km by 15 km and the grid is chosen to have 360 (1.5 km
length) horizontal grid cells and 60 vertical levels, which is
thought to be on the edge of the ‘grey zone’ where convec-
tive parametrizations are still needed in operational mod-
els (Yu and Lee, 2010) (although the ABC model presently
captures only dry circulations).

The model is thought to behave in a qualitatively sim-
ilar way to the real atmosphere. Flows may be approxi-
mately decomposed into slow-moving/low-frequency bal-
anced modes, intermediate frequency gravity modes, and
high-frequency acoustic modes. A linear analysis of this
model performed about a state of rest (not shown) reveals
a zero frequency Rossby-like mode, which is in a state of
geostrophic and hydrostatic balance, gravity modes with
frequencies up to 0.01 s−1 (the value of A) and speeds
approaching 20 ms−1, and acoustic modes with frequen-
cies up to ∼ 0.7 s−1 and speeds ∼ 30 ms−1. The fast gravity
and acoustic waves allow the model to adjust as a result
of added perturbations, for example, due to DA. These
aspects, including a demonstration of geostrophic adjust-
ment in ABC, are discussed in Petrie et al. (2017).

The associated DA (Bannister, 2020) is an incremental
3D-Var/3DFGAT-based variational system. The B-matrix

is modelled with a set of parameter/horizontal/verti-
cal transforms where the model variables are decom-
posed into balanced and unbalanced components which
are assumed to be uncorrelated. The ABC-DA control
parameters are streamfunction (𝛿𝜓), velocity potential
(𝛿𝜒vp), geostrophically unbalanced scaled density (𝛿𝜌 ′u,
akin to unbalanced pressure in other systems), hydro-
statically unbalanced buoyancy (𝛿b′u, akin to unbalanced
temperature, which is not considered in other systems,
for example, the Met Office’s variational system, which
assumes that all temperature increments are hydrostat-
ically balanced), and vertical wind (𝛿w, which is diag-
nosed from other variables in the Met Office’s system).
The scheme is flexible to allow the balance conditions
used in the B-matrix to be switched on or off to study
their effects on the analysis. Observations can be of any
of the variables at arbitrary positions in space and time.
The system includes a suite to calibrate the B-matrix
from ensembles of possible background states, and a
suite to run the assimilation in a cycled forecast/DA
mode.

3 SUMMARY OF BALANCE
RELATIONSHIPS FOR THE ABC
SYSTEM

In this section, we summarise the balance relationships
considered in this paper. Interest is ultimately concerned
with the equation sets of operational systems, so we give
two versions of the balance relationships: the balance rela-
tionships used for the ABC system are given here and
those relevant to the Euler equations are given in the
Appendix.

3.1 Linear balance in ABC

The linear balance equation (LBE) in ABC emerges from a
scale analysis of the zonal momentum equation for small
Rossby number (section 2.2 of Petrie et al. (2017)):

𝛿𝜌 ′b = (f∕C)𝛿𝜓, (1)

where a 𝛿 prefix indicates an increment, and a b super-
script indicates the balanced part of the variable1. Since f is
constant in ABC, Equation (1) is equivalent to geostrophic
balance.

1Note that in the ABC system, where there is no latitude dependence,
the Helmholz relations lead to 𝛿v = 𝜕𝛿𝜓∕𝛿x and 𝛿u = 𝜕𝛿𝜒vp∕𝜕x, where
𝛿𝜓 is the streamfunction increment and 𝛿𝜒vp is the velocity potential
increment.
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3.2 Hydrostatic balance in ABC

The hydrostatic balance equation (HBE) emerges from
a scale analysis of the vertical momentum equation for
either small Rossby number or for a small ratio of vertical
to horizontal wind magnitude:

C𝜕𝛿𝜌 ′∕𝜕z = −𝛿b′b. (2)

A strongly imposed hydrostatic balance eliminates ver-
tically propagating acoustic waves. In ABC-DA though,
and unlike other systems, some hydrostatically unbal-
anced analysis increments are allowed (Bannister, 2020).

4 USING THE BALANCE
RELATIONS IN ABC-DA

The ABC-DA variational scheme is documented in Ban-
nister (2020), but the relevant parts of the control variable
transform (U), which define the B-matrix, are summarised
as follows. As mentioned in Section 2, the control param-
eters of ABC-DA are 𝛿𝜓 , 𝛿𝜒vp, 𝛿𝜌 ′u, 𝛿b ′u, and 𝛿w. These
parameters are assumed to be mutually uncorrelated (in
the sense of background errors) for the purposes of mod-
elling B. These parameters are fields that still have spatial
covariances, but are related to the associated control vari-
ables (𝛿𝜒𝜓 , 𝛿𝜒𝜒vp , 𝛿𝜒𝜌 ′u , 𝛿𝜒b ′u , and 𝛿𝜒w respectively) via the
spatial transform, Us:

𝛿𝜓 = Us
𝜓𝛿𝜒𝜓 , 𝛿𝜒vp = Us

𝜒vp
𝛿𝜒𝜒vp , 𝛿𝜌 ′u = Us

𝜌 ′u𝛿𝜒𝜌 ′u ,

𝛿b′u = Us
b′u𝛿𝜒b′u , and 𝛿w = Us

w𝛿𝜒w.

Control variables are taken to have no auto-covariances
and to have unit background variances. The Us

𝜓 , etc., form
the block-diagonals of Us, and are the square-roots of the
background-error auto-covariances; for example, Us

𝜓Us
𝜓

T

is the auto-covariance matrix of 𝛿𝜓 . Control variable trans-
forms are described more fully in Bannister (2008).

The key parts of the transforms relevant to this paper
are as follows (see also Table 1). The total scaled density
increment, 𝛿𝜌′, is found as the sum of balanced, 𝛿𝜌 ′b, and
unbalanced, 𝛿𝜌 ′u, parts where the balanced part is found
from 𝛿𝜓 via the LBE (Equation (1)) (steps II and III of
Table 1):

𝛿𝜌 ′ = 𝛿𝜌 ′b + 𝛿𝜌 ′u = 𝛼(f∕C)𝛿𝜓 + 𝛿𝜌 ′u

= 𝛼(f∕C)Us
𝜓𝛿𝜒𝜓 + Us

𝜌 ′u𝛿𝜒𝜌 ′u . (3)

The factor 𝛼 is introduced to turn on (𝛼 = 1) or turn
off (𝛼 = 0) the effect of the LBE in the covariance model.
The total buoyancy increment, 𝛿b′, is similarly found as

T A B L E 1 Summary of the parameter transform of
the convective-scale scheme detailed in Bannister (2020).
Control parameters are underlined, and 𝛼 and 𝛽 are
switches described in the text

I. Winds 𝛿u = ∇x𝛿𝜒vp, 𝛿v = ∇x𝛿𝜓

II. Balanced mass 𝛿𝜌 ′b (Equation (1))
III. Total mass 𝛿𝜌 ′ = 𝛼𝛿𝜌 ′b + 𝛿𝜌 ′u

IV. Balanced buoyancy 𝛿b′b (Equation (2))
V. Total buoyancy 𝛿b′ = 𝛽𝛿b′b + 𝛿b′u

VI. Vertical wind 𝛿w

the sum of balanced, 𝛿b′b, and unbalanced, 𝛿b′u, parts
where the balanced part is found from 𝛿𝜌 ′ via the HBE
(Equation (2)) (steps IV and V of Table 1):

𝛿b′ = 𝛿b′b + 𝛿b′u = −𝛽C 𝜕

𝜕z
𝛿𝜌 ′ + 𝛿b′u

= −𝛽C 𝜕

𝜕z

{
𝛼(f∕C)Us

𝜓𝛿𝜒𝜓 + Us
𝜌 ′u𝛿𝜒𝜌 ′u

}
+ Us

b ′u𝛿𝜒b ′u . (4)

The factor 𝛽 is introduced to turn on/off the effect of
hydrostatic balance. Note that only 𝛼 = 0, 1 and 𝛽 = 0, 1
are considered in detail in this paper, although in the
summary we consider treating 𝛼 and 𝛽 as continuous vari-
ables as a possible extension. These steps are similar to
the Met Office’s control variable transform (Lorenc et al.,
2000; Ingleby, 2001), except that the Met Office (a) has an
extra vertical regression step after application of the LBE,
and (b) does not allow an unbalanced temperature incre-
ment (equivalent to always setting 𝛿b′u = 0 in ABC). The
vertical regression step acts to complete the prediction of
the ‘balanced’ pressure and can allow for inapplicability
of enforcing the LBE directly. The vertical regression step
is an optional part of ABC-DA, but is not applied here
because the earlier study of Bannister (2020) found it to
degrade the accuracy of the ABC analysis, and interest in
this paper is the application of purely analytical balance
relationships.

The assumption that the control variables are uncor-
related leads to the implied B-matrix of this system. For
instance, when 𝛼 = 1 the implied background-error vari-
ance for scaled density emerges from Equation (3) as
follows:

⟨
𝛿𝜌 ′2⟩ =

(
f
C

)2 ⟨
𝛿𝜓2⟩

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
balanced scaled
density variance

+
⟨
𝛿𝜌 ′u2⟩

⏟⏞⏟⏞⏟
unbalanced scaled
density variance

+ 2
f
C
⟨
𝛿𝜓𝛿𝜌 ′u⟩

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

,

bal./unbal. scaled density
covariance, zero by assumption

(5)
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where ⟨•⟩ is the expectation over the hypothetical back-
ground probability density function2. The last term in
Equation (5) is zero if the zero-correlation assumption
of the covariance model is correct. Since this is assumed
in the DA, the implied covariance comprises only the
first two terms of Equation (5). If exploration of the
background-error statistics outside of the DA environment
show that this term is non-zero, then this term repre-
sents the covariance model’s anomaly, and will represent a
sub-optimality in the DA. A similar argument applies to b′.
When 𝛼 = 0 the balanced variance is not present and so the
implied variance is purely unbalanced

⟨
𝛿𝜌 ′2⟩ =

⟨
𝛿𝜌 ′u2⟩

and the implied covariance between 𝛿𝜓 and 𝛿𝜌 ′ is lost.

5 ORIGIN OF THE TWO
CALIBRATION ENSEMBLES

Forecast-error statistics are affected by the observation
network, the DA system, the length of the prior fore-
casts, and the errors in the formulation of the model (e.g.,
Houtekamer et al., 1996), including representativity error
(Hodyss and Nichols, 2015) (Model and representativity
errors are absent in this study as we perform only identical
twin experiments to test the DA.) In this study we follow
the standard procedure of attempting to calibrate B using
a sample from these statistics. However, the generation
of such a sample of forecast errors is difficult to do from
scratch since it requires the B-matrix to define the DA in
the first place (to generate the forecasts’ initial conditions).
This is a ‘chicken-and-egg’ problem. For this reason, we
accept that there is no easy or perfect solution and we pro-
ceed pragmatically. We propose two methods of defining
populations of forecast errors used to calibrate B, and com-
pare how each affects the performance of the DA system.
Each method is described below.

5.1 The latitude slice method

The first method takes sequences of u and v fields from dif-
ferent latitudes of a dump of the Unified Model with the
same horizontal grid length and domain size. Each slice
is modified so that it obeys periodic boundary conditions
(section 5.2 of Petrie et al., 2017). The w field is found by
then imposing zero three-dimensional divergence. Since
𝜌′ and b′ are not part of the UM, these are found from the

2Interested readers are referred to section 4.4 of Bannister (2020) for the
full multivariate implied B-matrix (where cross-correlations between
control variables are assumed zero). Additionally the covariance
structures are revealed graphically in single-observation experiments
shown in section 7.2 of that paper.

balance conditions (first 𝜌′ is found by integrating the LBE
given v, and then b′ is found from the HBE given 𝜌′). This
processing from each latitude provides a set of ABC initial
conditions, which are then run through the ABC model for
1 hr. The resulting population of states forms an ensem-
ble of 260 plausible model forecasts, and the deviations
from the mean are assumed proxies for forecast errors. We
believe that the 1 hr integration is long enough to spin up/
down imbalances in the system as revealed by studying
variance spectra of balanced and unbalanced 𝜌′ at a func-
tion of lead time. These converge quickly to the 1 hr spectra
shown in the next section.

5.2 The NMC method

The second method derives proxy forecast errors using the
standard National Meteorological Centre (NMC) method
(Parrish and Derber, 1992) by taking a population of 260
2 hr minus 1 hr forecasts (divided by

√
2) from the cycled

ABC-DA system. As this method relies on an existing DA
system (including the B-matrix), we are faced with a prag-
matic choice and choose this underlying system to be that
calibrated with statistics from the latitude slice method
where all balances in the B-matrix are switched off. This
is an arbitrary decision, but investigating the effect of the
underlying DA system on the NMC method is outside the
scope of this work, but for now does provide an alternative
set of ABC-DA results to study.

Even though the NMC method is widely used, it
does not yield perfect proxies of forecast errors (Berre
et al., 2006). For instance, as the method uses differences
between forecasts valid at the same time, it is likely to
underestimate errors in unobserved quantities (in this
study u and w are unobserved; Section 7).

6 POSSIBLE CONSEQUENCES OF
USING BALANCE CONDITIONS
INAPPROPRIATELY

The model of B that gives Equation (5) is useful only if
𝛿𝜌 ′b as found from 𝛿𝜓 (Equation (1)) has a strong correla-
tion with 𝛿𝜌 ′, and the residual, 𝛿𝜌 ′u, is uncorrelated with
𝛿𝜌 ′b. This may happen by 𝛿𝜌 ′b and 𝛿𝜌 ′u having very differ-
ent time-scales (i.e., by the gravity modes being associated
with faster processes than Rossby modes as discussed in
Section 2). This is the situation in the schema shown
in Figure 1a, which is the case expected for large-scale,
midlatitude dynamics where balanced increments may be
thought to define a balanced manifold where unbalanced
increments form a ‘fuzzy’ region around that manifold.
Alternatively when 𝛿𝜌 ′b as found from 𝛿𝜓 does not predict
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F I G U R E 1 Schemas to
illustrate situations when (a) the
balanced (𝛿𝜌 ′b)/unbalanced
(𝛿𝜌 ′u) partitioning of a
background-error variable (𝛿𝜌 ′)
is appropriate for the model of B,
(b) when the balanced
parameter is systematically
underestimated by the balance
operator, (c) when the balanced
parameter is systematically
overestimated, and (d) when the
balanced/unbalanced
partitioning is completely
inappropriate. In all panels,
𝛿𝜌 ′ = 𝛿𝜌 ′b + 𝛿𝜌 ′u. In (a) 𝛿𝜌 ′b

broadly follows 𝛿𝜌 ′, and 𝛿𝜌 ′u is
mutually uncorrelated with 𝛿𝜌 ′b.
In (b/c) 𝛿𝜌 ′b and 𝛿𝜌 ′u are
expected to be
positively/negatively correlated.
In (d) this correlation is
non-zero of undetermined sign.
In cases (b, c, d) the variance of
𝛿𝜌 ′u is expected to be too large
when the variational DA
statistics are calibrated

well 𝛿𝜌 ′, there will be a large 𝛿𝜌 ′u to compensate for
the bad 𝛿𝜌 ′b prediction. Consequently 𝛿𝜌 ′u and 𝛿𝜓 will
become correlated (even though they are still assumed to
be uncorrelated in the covariance model). This is the sit-
uation in Figure 1b–d. In cases (b, c), 𝛿𝜌 ′b consistently
under/overestimates 𝛿𝜌 ′ (representing cases when the bal-
ance relation is applied not strongly enough/ too strongly)
and in case (d) 𝛿𝜌 ′b is completely unrelated to 𝛿𝜌 ′ (rep-
resenting cases when there is no useful information in
the applied balance relation). The implied variance for 𝛿𝜌 ′

is the sum of the balanced and unbalanced contributions
(only the first two terms in Equation (5)), which may be an
under- or overestimate of the true variance, meaning that
observations of scaled density will be under- or overfitted
by the DA, respectively. The quantity that demonstrates
that a covariance model is not appropriate is the last term
in Equation (5) (the anomaly), 2

⟨
𝜌 ′b𝜌 ′u⟩.

For illustration, Figure 2 shows the contributions to the
mass variances at about 4 km elevation as a function of
scale as found from ensembles of the UM (a, b at two differ-
ent times 1230 and 1630 UTC on 20 September 2011) and
ABC forecasts (c, d found from the latitude slice and NMC

methods; Section 5). The mass variable is pressure and
scaled density in the UM and ABC systems respectively,
the LBEs Equations (A2) and (1) are used to derive the bal-
anced masses, and deviations from the means in these fore-
casts are proxies for background error (the Figure 2 caption
gives details). Between the times 1230 and 1630 a cold front
bringing precipitation passed through the domain. Note
that, even though data from the UM are shown in Figure 2
(a, b), the Met Office procedure of accompanying the bal-
ance relation by vertical regression is not performed here.

In (a) the balanced mass variance (dashed black line) is
consistently smaller than the total variance (black contin-
uous line), apart from at the largest scales where the bal-
anced mass dominates3. The unbalanced variance (dashed
grey line) is mainly coincident with the total variance. The
anomaly of the covariance model (continuous grey line) is
of the same order as (but slightly larger than) the balanced

3The balanced mass at the largest scale is manually set to the level mean
total mass. This is the undetermined integration constant in computing
the balanced mass and means that the unbalanced variances are
precisely zero at this scale.
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F I G U R E 2 Total, balanced, and unbalanced contributions to the mass background-error variance as a function of scale in the UM at
two different times (a) 1230 UTC and (b) 1630 UTC, and in the ABC model using two different forecast error samples (c) the latitude slice
method and (d) the NMC method. The anomalous mass variance is also plotted (the magnitude of the difference between the total mass
variance and the implied mass variance). The grid box sizes of the UM and ABC model are the same (1.5 km), although the UM’s horizontal
plane is two-dimensional (so the total horizontal wavenumber is

√
k2

x + k2
y ), and the ABC model’s horizontal plane is one-dimensional. The

downward spikes in the UM data are believed to be an artifact of the total wavenumber binning. The mass variables are pressure and scaled
density in the UM and ABC respectively, and the variances are averaged over a few levels around 4 km in height. The UM spectra are found
from 24-member ensembles of 1 hr UM forecasts initialised from an Ensemble Transform Kalman Filter (Baker et al., 2014), where the
balanced pressure is derived from the UM’s horizontal winds (Appendix A1) by imposing Neuman boundary conditions. The ABC spectra
are found from the two 260-member ensembles as detailed in Section 5 as used later to calibrate the DA system. The balanced scaled density
is found from Equation (1). Note that, where the ‘unbalanced’ line is not visible, it overlaps with the ‘total’ line (as indicated), and enlarged
parts of the spectra are shown in (b)

variance, except for the very largest scales. Where the
anomaly is much smaller than the total (∼ 20 to∼ 200 km),
scenario (a) applies approximately in Figure 1. At smaller
scales we suggest that scenario (b) applies, owing to the
small balanced variance. In (b) there is a more varied
ordering of the lines. Unlike in (a), the balanced variance
does not take the lowest value, except marginally for scales
between 40 and 80 km. However, at all other scales apart
from the largest, the anomalous variance dominates. This
suggests either scenarios (b) or (d) of Figure 1 are relevant
for this panel.

In (c), where the latitude slice data are studied for the
ABC model, the total and unbalanced variances dominate
over all scales, apart from the largest scale, where only
the total variance dominates, rather like the UM in (a).
There appear to be three scale regimes. At the largest scales

(above 300 km), the anomalous variance is the smallest.
Between scales 30 and 300 km, the anomaly is of the same
order of magnitude as the balanced variance, but at scales
smaller than 30 km the balanced variance naturally takes
smallest values, leaving the unbalanced variance to take all
the variance. The small value of the anomaly at all scales
suggest that scenario Figure 1a is valid, although for many
scales it is because the balanced variance is naturally negli-
gible anyway. In (d), where the NMC variances are shown,
there are some qualitative similarities and differences with
(c). As in (c), the total and unbalanced variances dominate
and the balanced variance has the smallest contribution
over all scales, apart from at the largest scales. In (d) the
anomalous variance still contributes a significantly larger
proportion than the balanced variances over a wide range
of scales, but is still orders of magnitude smaller than
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the total variance, hinting that the covariance model may
still be appropriate. Note that, despite the very different
scales of the y-axes between (c) and (d) when spectrally
resolved, the standard deviations of the NMC 𝜌 ′ errors are
not smaller by orders of magnitude; the typical standard
deviations of 𝜌 ′ errors from the NMC method are about
one third of those from the latitude slice method.

Where anomalous variances comprise a significant
proportion of the total variance, this suggests that the LBE
is not appropriate for the B model. These results show that,
in terms of the validity of the LBE, there are some similar-
ities and differences between the behaviours of a realistic
3D model like the UM and a ‘toy’ model like ABC, but
that the applicability of the LBE in covariance modelling
is likely to be less useful in a real system than in ABC.
The rest of this paper is concerned only with ABC, but the
above differences must be borne in mind when judging the
relevance of our ABC DA results later in the paper to more
realistic systems.

7 DATA ASSIMILATION
EXPERIMENTS WITH ABC WITH
DIFFERENT BALANCE OPTIONS

In Section 6 we showed that the way that background
errors are modelled with balance conditions may often
be inappropriate and so requires further examination. In
this section we describe and show results from a series
of multi-cycle DA OSSEs (Observation System Simulation
Experiments) with the ABC-DA system to see if linear and
hydrostatic balances provide any advantage in covariance
modelling at convective scales. This is done by switch-
ing on and off these balances in the B-matrix so that the
total 𝜌 ′ or b′ increments are best represented either as the
sum of balanced and unbalanced components as shown
in Section 4 (e.g., 𝛼 = 1, 𝛽 = 1), or each as just one com-
ponent (the unbalanced component) describing the whole
increment (e.g., 𝛼 = 0, 𝛽 = 0). Turning off a balance rela-
tion may indeed allow a more realistic autocovariance for
either 𝜌 ′ or b′, but this may come at the expense of destroy-
ing any multivariate components in the implied B-matrix.
For each combination of 𝛼 and 𝛽, and for each population
of forecast errors described in Section 5, the spatial trans-
forms mentioned in Section 4 are re-calibrated in the way
described in Bannister (2020).

7.1 Description of the experiments

We perform two sets of four DA experiments. The first set
uses a the latitude slice method as a population of possible
forecast errors to calibrate B, and the second set uses the

NMC method. The four DA experiments in each set are as
follows:

(a) 𝛼 = 0, 𝛽 = 0 (no balance equations used),
(b) 𝛼 = 0, 𝛽 = 1 (only HBE used),
(c) 𝛼 = 1, 𝛽 = 0 (only LBE used), and
(d) 𝛼 = 1, 𝛽 = 1 (LBE and HBE used).

The DA cycling period is 1 hr, where the analysis from
each cycle is used to initialise a 1 hr forecast to yield the
background of the next cycle, and 30 cycles are made. The
first background is formed from the initial truth state with
an initial perturbation of five times a random background
error drawn from the modelled B-matrix. Observations of
v, 𝜌 ′, and b′ are made at the start of each cycle, each on a
90 × 30 grid spanning the lower boundary to 12 km. The
observation-error standard deviations for v, 𝜌 ′, and b′ are
0.5 ms−1, 10−3 and 1.5 × 10−2ms−2, respectively.

7.2 Triple observation assimilation
increments

In order to help understand the impact of assimilating
observations of v, 𝜌 ′, and b′ in each of the four DA exper-
iments, Figure 3 shows the analysis increments of assimi-
lating an individual triple observation of v, 𝜌 ′, and b′. For
this experiment, the B-matrix derived from the latitude
slice method is used4, and components of the innovation
vector are set to the respective observation-error standard
deviations.

When 𝛼 = 0 and 𝛽 = 0 (first column), the increments
are formed independently as the B-matrix in this case is
univariate. The increments peak at the observation loca-
tions (crosses) and have negative side lobes. The different
quantities have different length-scales, found from the cal-
ibration. When the HBE only is used to model the B-matrix
(𝛼 = 0 and 𝛽 = 1, second column), the difference from
the first column is mainly in the 𝜌 ′ increment, but the
b′ increment is also slightly affected. This is due to the
HBE coupling these two quantities as Equation (2). When
the LBE only is used (𝛼 = 1 and 𝛽 = 0, third column) the
differences from the first column are with the v and 𝜌 ′

increments. These increments have lost their horizontal
symmetry: the 𝜌 ′ observation will encourage a dipole in
v in order to maintain linear balance, but the v observa-
tion will encourage a positive v at the cross, thus shifting
the dipole horizontally. When both HBE and LBE are used
(𝛼 = 1 and 𝛽 = 1, fourth column) all fields are coupled and
so all observations will affect all fields, giving rise again

4Results for the NMC-derived B-matrix show smaller magnitudes to
those in Figure 3, but of similar structures.
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F I G U R E 3 Analysis increments resulting from the assimilation of the triple observation (v, 𝜌 ′, and b′ combined) in the lower part of
the domain (the position of the cross 4 km above the surface). The four columns correspond to the different B-matrices (configurations
(i)-(iv) described in Section 7.1), which have different balances turned on/off, and each calibrated according to data from the latitude slice
method. The rows show v, 𝜌′ and b′ respectively (other quantities have zero increments in these experiments) [Colour figure can be viewed at
wileyonlinelibrary.com]

to the asymmetry. The question is whether imposing such
structures has a beneficial or harmful effect in cycled DA
for this system.

7.3 ABC assimilation performance

7.3.1 Variation with time
of domain-averaged analysis errors

Figure 4 shows the domain-averaged root-mean-squared
errors (RMSE) of each model quantity (rows) as a func-
tion of time for 0-to-1 hr forecasts starting from each cycled
analysis (the times of the vertical yellow lines). The left
column is for the systems calibrated with the latitude slice
method and the right column for the NMC method. Recall
that v, 𝜌 ′, and b′ are observed at the start of each cycle,
but the unobserved quantities u and w are affected via the

forecasts for each new background state. For conciseness,
the experiments will be referred to as [𝛼, 𝛽].

According to these statistics, there is no clear picture
regarding which configuration of the B-matrix, [𝛼, 𝛽], has
lowest RMSE as the best and worst configurations differ
between quantities and calibration methods. As the sys-
tems are quite complex, it is usually not possible to easily
explain why some of the results appear, but there is still
potentially useful information in just describing them.

• For errors in u: in (a1) [0, 0] and [1, 1] are the best
settings, but in (a2) only [1, 1] is the best. The fact
that in (a1) turning on LB and HB separately worsens
the RMSE, but turning them on together restores the
performance must be due to the interaction between the
two settings. This permits useful v–b′ and 𝜌 ′–b′ covari-
ances which enable extra information to be extracted
from the observations, perhaps in some sense cancelling

http://wileyonlinelibrary.com
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F I G U R E 4 Cycled analysis errors for systems with B-matrices calibrated with the latitude slice method (left column) and the NMC
method (right column) (Section 5). Different model quantities are in each row. Errors are defined as the domain-averaged root-mean-squared
error (against the true state) of 0-to-1 hr forecasts starting from the analysis at each cycle. The yellow vertical lines mark the analysis times
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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out the individual LB and HB related structures (see the
full implied covariance matrix, equation (33) of Bannis-
ter (2020) with 𝛾 (a further switch) set to zero in that
equation). Note that, since u is always univariate and
unobserved, it is not updated by the DA, and so infor-
mation is propagated from these quantities to u by the
ABC model from one cycle to the next.

• For errors in v: in (b1) [0, 0] and [1, 1] are again the
best settings, but in (b2) [0, 1] and [1, 1] are the best.
A similar discussion to that for u applies, but here the
covariances can affect v directly.

• For errors in w: in (c1) [0, 1] and [1, 1] are the best set-
tings, but in (c2) only [1, 1] is the best. All of these
settings invoke HB covariances. As for u, w is always
univariate and unobserved and so is affected indirectly.

• For errors in 𝜌 ′: in both (d1) and (d2) [0, 1] and [1, 1] are
the best settings, that is, those that invoke HB covari-
ances.

• For errors in b′: in (e1) [0, 0], [0, 1], and [1, 0] are the best
settings, but in (e2) only [0, 1] is the best. Applying only
HB appears to be useful in all cases.

In general, the best compromise configuration is [1, 1]
(the exception being the b′ analysis, especially with the lat-
itude slice calibration method). The same conclusions are
reached by studying 1-to-2 hr forecast errors (instead of the
0-to-1 hr forecasts above; not shown).

7.3.2 Spectrally resolved analysis-error
variances

In order to shed some light on these results, Figure 5 shows
snapshots (t = 15 hr) of error variance spectra for each
quantity averaged over all vertical levels. The spectra are
found by Fourier transforming the errors at the snapshot
time to give 𝜖(k, z) (𝜖 ∈ {𝛿u, 𝛿v, 𝛿w, 𝛿𝜌 ′, 𝛿b′}), where k is
the wavenumber and z is the level, and then averaging[
𝜖(k, z)𝜖∗(k, z)

]1∕2 over z. The spectra are plotted as a func-
tion of wavelength, 2𝜋∕k. This is done for each quantity,
for each LB/HB switch configuration, and for the latitude
slice (left column) and NMC (right column) methods of
calibrating B.

• For spectral error variances in u: in (a1) [0, 0] and [1, 0]
are the best settings, which are evident at small scales,
but in (a2) [1, 1] is marginally the best setting, which is
evident at large scales. Given the log scales, and the fact
that the variances reduce with scale, any settings that
show superiority only at small scales will not necessar-
ily be seen in the domain averages in Figure 4. This is
relevant when comparing Figure 5a1 with Figure 4a1.

The result for (a2), showing superiority of [1, 1], can
though be seen in Figure 4a2, since the difference is at
large scales, which contribute most to the overall error
variance. Figure 5a1 suggests that enforcing HB can be
harmful if one is interested in small-scale analyses of u.

• For spectral error variances in v: in Figure 5b1 all set-
tings appear to perform equivalently, but [0, 1] shows a
slight increase in error at large scales. This is consistent
with Figure 4b1 at t = 15 (computing similar spectra
for t = 18 (not shown), reveals [1, 1] is the best setting
at large scales, which is consistent with Figure 4b1 at
that time). In Figure 5b2 there is a contrast between
large and small scales – at large scales [0, 1] and [1, 1]
are best (consistent with Figure 4b2), but at small scales
[0, 0] and [1, 0] are best. The Figure 5b2 result suggests
that enforcing HB can be helpful if one is interested in
large-scale analyses of v, but harmful if one is interested
in small-scale analyses.

• For spectral error variances in w: in Figure 5c1 there
is also a contrast between large and small scales – at
large scales [0, 1] and [1, 1] are the best (consistent with
Figure 4c1), but at small scales [0, 0] and [1, 0] are best.
In Figure 5c2 [1, 1] is best at large scales (consistent
with Figure 4c2). In general these results again suggest
a helpful role of HB in the covariances at large scales,
but a harmful one at small scales. As w is not observed,
these effects follow indirectly.

• For spectral error variances in 𝜌 ′: in Figure 5d1, d2 the
best setting is [1, 1] (for (d2) this is only marginally the
best), which is consistent with Figure 4d1,d2.

• For spectral error variances in b′: in Figure 5e1 the
best settings are [0, 0] and [1, 0], which appear at small
scales, and in (e2) the best settings are (marginally) [0, 1]
and [1, 1] at large scales. Both of these results are con-
sistent with Figure 4 e1,e2 at t = 15 hr. Once again, in
general we find a helpful role of HB in the covariances
at large scales, but a harmful one at small scales.

Although the performance of the different balance set-
tings sometimes varies between the two calibration meth-
ods, there is a frequently observed characteristic that the
HBE in particular remains a useful relationship to use
above scales 10 to 100 km, and sometimes is harmful below
these scales.

8 CROSS- CORRELATIONS
BETWEEN CONTROL PARAMETERS

In order to relate the results of Section 7 to the discus-
sion in Sections 4 and 6, we briefly look at the correlations
between the control parameters. Recall that anomalous
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F I G U R E 5 Spectra of analysis error variances for each model quantity (rows) at the snapshot mid-way through the experiment
(t = 15 hr), averaged over all vertical levels. Results are shown for the systems with B-matrices calibrated with the latitude slice method (left
column) and the NMC method (right column) (Section 5) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 6
Cross-correlations of proxy 1 hr
forecast errors of a selection of
control parameters in spectral
space. Proxies from the latitude
slice method are shown in the left
column and the NMC method in
the right column (Section 5). The
experiments are 𝛼 = 0, 𝛽 = 0 (with
control parameters 𝛿𝜓 and 𝛿𝜌 ′ in
(a1,a2); 𝛿𝜌 ′ and 𝛿b′ in (c1,c2)) and
𝛼 = 1, 𝛽 = 1 (with control
parameters 𝛿𝜓 and 𝛿𝜌 ′u in (b1,b2);
𝛿𝜌 ′u and 𝛿b′u in (d1,d2)). The
correlations are computed for each
level and then averaged vertically
over all levels

(co)variances appear when there are correlations between
the control variables. It was taken that assuming these cor-
relations are zero when they are actually non-zero leads to
sub-optimalities in the covariance model, possibly leading
to enhancement of errors in the DA.

Figure 6 shows correlations (in spectral space) between
a selection of control parameters calculated with each

calibration method to show how these change with scale
and with the different balance configurations used (for
brevity, only [0, 0] and [1, 1] are considered). The first row
is the correlation of 𝛿𝜓 with 𝛿𝜌 ′ for [0, 0]. The correlations
are close to zero for the latitude slice (a1) and NMC
(a2) methods at scales smaller than 30 km, but deviate
away from zero at larger scales (the NMC method in (a2)
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shows a slight negative correlation trend, which is puz-
zling). The second row is the correlation of 𝛿𝜓 with 𝛿𝜌 ′u

for [1, 1]. Clear from a comparison of the panels is that,
whether or not the LBE is used, there is little effect on
the correlations at small scales. Figure 6b1 shows that
the large-scale non-zero correlations for [0, 0] are reduced.
This is consistent with the lowering of the large-scale anal-
ysis errors of 𝜌 ′ in Figure 5(d1) when the LBE is exploited
(compare black and dotted purple lines). The NMC corre-
lations are made very slightly more negative at large scales,
even though there is also a reduction in analysis errors of
𝜌 ′ in Figure 5d2 when the LBE is exploited.

The third row is the correlation of 𝛿𝜌 ′ with 𝛿b′ for [0, 0].
The correlations for the latitude slice (c1) and the NMC
(c2) methods are similar and are distributed about zero.
The fourth row is the correlation of 𝛿𝜌 ′u with 𝛿b′u for [1, 1].
Figure 6d1, d2 both show the emergence of significant cor-
relations between these unbalanced parameters at small
scales, and a tightening of correlations about zero at larger
scales, which is consistent with an improvement of a num-
ber of quantities in Figure 5 (most notably Figure 5c1), but
also in other panels where the dotted purple lines are lower
than the black lines at small scales and/or the reverse at
large scales).

9 DISCUSSION, CONCLUSIONS
AND FUTURE DIRECTIONS

9.1 Discussion and conclusions

This paper explores some of the dynamical issues regard-
ing background-error covariances in convective-scale DA.
This has been done primarily using the simplified (lon-
gitude/height domain) ABC model and its 3D-Var DA
system (known as ABC-DA; Bannister 2020). This paper
is likely to be of interest to centres developing or operat-
ing convective-scale variational (3D or 4D) or hybrid DA
systems. Particular questions relate to the use or not of bal-
ance equations to model background-error covariances, B.

We test whether separating fields into their balanced
and unbalanced components (Section 3) can allow these
motions to be treated separately in DA (as separate, uncor-
related, control parameters). Questions arise regarding
their dynamical and statistical independence when the
validity of the balance relationships is thought to be
invalid, such as for linear balance (LB) and hydrostatic bal-
ance (HB) at km scales of motion. A conceptual framework
is described to show how correlations that are present
between such control parameters (but unaccounted for)
will lead to anomalies in the background-error covari-
ance model and to sub-optimalities in analyses (Sections 4
and 6). An analysis of some proxies of 1 hr forecast errors

of the Met Office system and of the ABC system do sug-
gest for instance that there could be significant anomalies
in the background-error covariances in the UM and ABC
systems, at least for the mass field.

A more definitive answer to whether the use of bal-
ance relationships at convective scale helps or hinders
the DA problem is to perform cycled DA experiments
(Section 7). A set of cycled ABC-DA identical-twin experi-
ments have been performed on a midlatitude limited-area
domain with a grid size of 1.5 km where LB and HB have
been systematically switched off and on in B via the respec-
tive switches 𝛼 = 0, 1 and 𝛽 = 0, 1, indicated by [𝛼, 𝛽]. Each
experiment uses a separately calibrated B-matrix with
training data from one of two methods: the ‘latitude slice
method’ where proxies of forecast errors come from an
ensemble of 1 hr forecasts whose members originate from
latitude slices of a parent 3D model (a UM file), and the
NMC method where proxies of forecast errors are differ-
ences between 2 hr and 1 hr ABC forecasts. The DA cycling
time is 1 hr and observations of v, 𝜌 ′ and b′ are assim-
ilated (analogous to observations of wind, pressure and
temperature respectively).

Domain-averaged root-mean-squared errors indicate
that there is no clear combination of LB and HB balance
settings which gives the best results for all quantities. For
instance [1, 1] performs better than [0, 0] for w and 𝜌 ′ for
both calibration techniques, but [1, 1] is worse than [0, 0]
for b′, but only for the latitude slice calibration method.
The [1, 1] configuration is arguably the most successful
overall for both calibration techniques. The positive effect
of HB especially on w is particularly interesting as w is
not observed and is a univariate variable in the DA. The
positive effect is due to favourable influences of the assim-
ilation with HB covariance structures on other variables
and their coupling to w via the forecasts.

Looking at the contributions to errors at different
scales reveals that using HB in particular in B is rarely
a disadvantage at ‘large scales’ and not using balance
is never a disadvantage at ‘small scales’. The w errors
in particular are interesting as, although HB provides
an advantage on average, there is a clear disadvan-
tage at ‘small’ scales (seen in the latitude slice cali-
brated results) and an advantage at ‘large’ scales (seen in
both calibration techniques). The dividing line between
‘large’ and ‘small’ scales is found to be 10–100 km
(depending on the quantity and calibration method).
Scale-separated correlations between control parameters
do show that HB does have uncorrelated control param-
eters at large scales, but univariate control variables (no
balances enforced) lead to uncorrelated control param-
eters at small scales (Section 8). However, in the case
of the LBE, setting 𝛼 = 1 naturally leads to a very small
magnitude of 𝛿𝜌 ′b at small scales anyway, and so here
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it usually does not matter whether 𝛼 = 0 or 1 in the
ABC system.

9.2 Further analysis and possible
future work

The results studied in this paper have focussed on switch-
ing on/off the LBE and HBE with 𝛼 and 𝛽. Instead of
treating 𝛼 and 𝛽 as switches (0 or 1) it is also pos-
sible to treat 𝛼 and 𝛽 as continuous variables, which
can modulate the balanced components of the fields. In
particular, one may choose ‘optimal’ values, which min-
imise the variance of the unbalanced variables and elim-
inate the cross-covariances between the balanced and
unbalanced variables as found from training data (A.C.
Lorenc, personal communication, 2021). These optimal
values are

𝛼opt =
⟨
𝛿𝜌 ′T(f∕C)𝛿𝜓

⟩/⟨
(f∕C)𝛿𝜓T(f∕C)𝛿𝜓

⟩
,

and 𝛽opt =
⟨
𝛿b′T(−C𝜕𝛿𝜌 ′∕𝜕z)

⟩/⟨
(−C𝜕𝛿𝜌 ′∕𝜕z)T(−C𝜕𝛿𝜌 ′∕𝜕z)

⟩
.

Here the angled brackets represent an average over the
training data and recall that (f∕C)𝛿𝜓 is the linearly bal-
anced scaled density (Equation (1)), and −C𝜕𝛿𝜌′∕𝜕z is the
hydrostatically balanced buoyancy (Equation (2)). The 𝛼opt
factor is like a simplified version of the vertical regres-
sion operator which the Met Office applies with the linear
balance operator (see text after Equation (4)). However,
a rudimentary test of the configuration [𝛼opt, 𝛽opt] in the
data assimilation (involving a re-calibration) using both
training ensembles – the latitude slice and NMC meth-
ods – did not result in a general decrease of RMSE in the
analyses (not shown). Instead the [𝛼opt, 𝛽opt] analyses were
often found to be less accurate than the main settings [0, 0],
[0, 1], [1, 0], and [1, 1].

This counterintuitive result may actually highlight a
possibile difficulty with the training data rather than being
due to a breakdown of the idea. This points to further
work to generate better training ensembles, which more
closely resemble forecast errors. Even though we know
the ‘truth’ in our experiments, we do not know the true
B-matrix, but it may be possible to approach it by boot-
strapping with multiple iterations of the calibration. This
presents an interesting possibility that, as the imposed
B-matrix improves, the DA system may well become better
at correcting one set of scales over another. For instance,
if the large scales become better captured, then the anal-
ysis and forecast errors will become more unbalanced,
which has reportedly been seen in NWP systems over

recent decades (A.C. Lorenc, personal communication,
2021). We note that other major aspects, like the NWP
models and the observing systems, have improved over
that time as well as the ability to represent forecast-error
covariances.

Returning to the interesting scale-dependence of the
errors found in this paper’s results, this suggests a
multi-scale approach to the problem of background-error
covariance modelling. One way forward is to use dupli-
cate sets of control parameters – one set for small scales
where no balance relations would be used (i.e., 𝛼, 𝛽 are
set to zero or small values), and another set for larger
scales where the balance relations would remain as they
are in current systems (since large-scale errors would
still need to be corrected in a convective-scale system). A
transition between the two could occur between 10 and
100 km wavelength, and the mathematical framework for
this could be a two-band waveband transform (Fisher and
Andersson, 2001; Deckmyn and Berre, 2005; Bannister,
2007; Pannekoucke et al., 2007), with the smaller-scale
band using univariate parameters (no balance relation-
ships) and the larger-scale band using the balance relation-
ships. These results may also be useful for ensemble-based
convective-scale DA systems where efforts made in the
field of B modelling as in this paper could be used as a mul-
tivariate and scale-dependent localisation scheme (Caron
and Buehner, 2018).

Although we hope that this work is useful to the
numerical weather prediction community, it has obvi-
ous limitations. Although the the ABC equations exhibit
scale-dependent balance characteristics (Petrie et al.,
2017), it is a reduced-complexity, reduced-dimensionality
model with dry dynamics. Incorporating moist processes
into the model is work in progress and it will be interest-
ing to see if similar results are obtained in such a revised
model. The conclusions are also limited by the imperfect
way that proxies of forecast errors (used to calibrate B) are
generated. It will also be interesting to see how the results
change with latitude, for example, approaching the Equa-
tor, where the unbalanced motions would be expected to
have a larger effect.
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APPENDIX A. SUMMARY OF BALANCE
RELATIONSHIPS FOR EULER’S EQUATIONS

For reference purposes, this Appendix gives the bal-
ance equations for Euler’s equations.

A.1 Linear balance in Euler’s equations
The linear balance equation (LBE) derived from Euler’s
equations relates the balanced pressure (pb), the horizontal
wind (uh), and the balanced specific mass (𝛼b):

∇2
hpb − k ⋅ ∇ ×

(
f uh∕𝛼b) = 0, (A1)

where ∇h and ∇ are the horizontal and three-dimensional
gradient operators respectively, f is the Coriolis parameter,
k is the vertical unit vector, and uh = (u, v, 0). It is assumed
that uh is completely balanced and so does not need a ‘b’
superscript. Equation A1 is equivalent to geostrophic bal-
ance when f and 𝛼b are constant. For incremental DA the
linearised form of Equation (A1) is needed:

∇2
h𝛿pb + k ⋅ ∇ ×

{(
f∕𝛼b2

)
uh𝛿𝛼

b
}
− k ⋅ ∇

×
{(

f∕𝛼b) 𝛿uh
}
= 0, (A2)

where the 𝛿-prefixed variables are increments, and
other variables comprise the linearisation state, for
example, 𝛼b = 𝛼b + 𝛿𝛼b. The Met Office currently uses
Equation (A2) with the assumption that 𝛿𝛼b has a negligi-
ble contribution.
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A.2 Hydrostatic balance in Euler’s equations
The HBE, 𝜕p∕𝜕z = −𝜌g, together with the equation of state

p = Rd𝜌𝜃v(p∕p1000)Rd∕cp ,

may be written in a form relating balanced pressure (pb)
and balanced virtual potential temperature (𝜃b

v ):

𝜕

𝜕z

(
pb

p1000

) Rd
cp
+

g
cp𝜃

b
v
= 0, (A3)

where z is height, p1000 = 1000 hPa, Rd is the gas constant
for dry air, cp is the constant pressure specific heat capacity,

and g is the acceleration due to gravity. The incremental
form of Equation (A3) is:

Rd

cp

𝜕

𝜕z

⎡⎢⎢⎣
(

pb

p1000

) Rd
cp 𝛿pb

pb

⎤⎥⎥⎦ −
g

𝜃b
v

2 𝛿𝜃
b
v = 0. (A4)

This is the form used in the Met Office’s variational
scheme to diagnose temperature from pressure. Further,
the Met Office’s scheme assumes that all increments are
exactly hydrostatically balanced, that is, 𝛿p = 𝛿pb and
𝛿𝜃v = 𝛿𝜃b

v .


