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An IoT Application Business-Model
on top of Cloud and Fog Nodes

Zakaria Maamar1, Mohammed Al-Khafajiy2, and Murtada Dohan3

Abstract This paper discusses the design of a business model dedicated for IoT
applications that would be deployed on top of cloud and fog resources. This busi-
ness model features 2 constructs, flow (specialized into data and collaboration) and
placement (specialized into processing and storage). On the one hand, the flow con-
struct is about who sends what and to whom, who collaborates with whom, and
what restrictions exist on what to send, to whom to send, and with whom to collabo-
rate. On the other hand, the placement construct is about what and how to fragment,
where to store, and what restrictions exist on what and how to fragment, and where
to store. The paper also discusses the development of a system built-upon a deep
learning model that recommends how the different flows and placements should be
formed. These recommendations consider the technical capabilities of cloud and fog
resources as well as the networking topology connecting these resources to things.

1 Introduction

On top of services to provision and products to sell, organizations are known for
their cultures and business models. A typical example of a successful orga-
nization’s culture would be Google where openness, innovation, excellence that
comes with smartness, hands-on approach, and small-company-family rapport are
promoted (tinyurl.com/y6ld8wn9). And, a typical example of a successful
organization’s business model would be Amazon.com where millions of customer-
enacted e-commerce transactions are successfully performed (www.garyfox.
co/amazon-business-model).

To remain competitive and sustain growth, organizations also embrace ICTs with
focus lately on the Internet-of-Things (IoT). IoT is about making things like sen-
sors and actuators act over the cyber-physical surrounding so, that, contextualized,
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smart services are provisioned to users and organizations. According to Gartner
(www.gartner.com/newsroom/id/3165317), 6.4 billion connected things
were in use in 2016, up 3% from 2015, and will reach 20.8 billion by 2020. Another
recent trend in the ICT landscape is coupling IoT with cloud computing and fog
computing [15] (fog is aka edge). The massive volume of data that things generate,
needs to be captured, processed, analyzed, shared, and protected. Data range from
vegetables’ freshness in warehouses to traffic flows on roads and pollution levels
in cities. For many years, cloud has been the technology of choice for exposing re-
sources (traditionally software, platform, and infrastructure) as services (*aaS) to
organizations that have to “wrestle” with this massive volume of data. According
to Gartner too (goo.gl/m9MQXc), “by 2021, more than half of global enterprises
already using cloud today will adopt an all-in cloud strategy”. However, despite
cloud’s benefits there exist some concerns about cloud’s appropriateness for cer-
tain applications (e.g., medical and financial) that have strict non-functional require-
ments to satisfy in terms of minimizing data latency and protecting sensitive data.
Transferring data over public networks to (distant) clouds could take time because of
high latency, could be subject to interceptions, alterations, and misuses, and could
depend on network availability and reliability. To address data-latency and data-
sensitivity concerns, ICT practitioners advocate for fog computing where process-
ing and/or storage facilities are expected to exist “next” (or nearby) to where data is
collected minimizing its transfer and avoiding its exposure to unnecessary risks.

In this paper, we examine the appropriateness of developing a business model
for IoT applications that would run on top of a cloud/fog infrastructure. This busi-
ness model should (i) identify the data flows between IoT devices, clouds, and fogs,
(ii) expose how collaboration arises between IoT devices, clouds, and fogs, and
(iii) track where data processing and storage happen because of the distributed na-
ture of IoT devices, clouds, and fogs. To the best of our knowledge, this is the first
step towards defining such a business model in the double context of cloud and fog.
Mahmud et al. report the lack of business model for fog environments, only, [10].
The rest of this paper is organized as follows. Section 2 is a brief overview of cloud,
fog, and business model. Section 3 details the way we design a business model for
IoT applications. Technical details of this design are included in this section, as well.
Section 4 concludes the paper and presents some future work.

2 Background

Cloud and fog in brief. Cloud is a popular ICT topic that promotes Anything-
as-a-Service (*aaS) operation model. This model adopts pay-per-use pricing and
consolidates hardware and software resources into data centers. However, despite
cloud’s popularity, it does not, unfortunately, suit all applications. Cloud is not rec-
ommended for latency-critical and data-sensitive applications due to reasons such
as high latency added by network connections to data centers and multi-hops/nodes
between end-users and data centers that increase the probability of interceptions.



Fog was first introduced by Satyanarayanan et al. in 2009 [12] and generalized
by Cisco Systems in 2014 [3] as a new ICT operation-model. The objective is to
make processing, storage, and networking facilities “close” to where data is cap-
tured and/or stored. The extension from cloud to fog is not trivial due to their subtle
similarities and differences. However, their suitability for certain applications re-
mains an open debate [11]. Real-time applications that require almost immediate
action and high data protection, would discard cloud in favor of fog. Varghese et al.
mention that by 2020, existing electronic devices will generate 43 trillion gigabytes
of data that need to be processed in cloud data-centers [14]. However, this way of
operating cannot be sustained for a long time due to frequency and latency of com-
munication between these devices and cloud data-centers. Fog would process data
closer to its source so, that, network traffic is reduced and both quality-of-service
and quality-of-experience are improved.

Business model in brief. Despite the critical role of business model in any orga-
nization’s operation, there is not a common definition of what a business model is.
According to Geissdoerfer et al., it is “a simplified representation of the elements
of an organisation and the interaction between these elements for the purpose of
its systemic analysis, planning, and communication in face of organizational com-
plexity” [5]. In a 2015 Business Harvard Review report (hbr.org/2015/01/
what-is-a-business-model), it is mentioned that a business model consists
of 2 parts: “Part one includes all the activities associated with making something:
designing it, purchasing raw materials, manufacturing, and so on. Part two includes
all the activities associated with selling something: finding and reaching customers,
transacting a sale, distributing the product, or delivering the service”. Last but not
least, Li sheds light on a business model’s key constructs, namely, value proposi-
tion (product offerings of the firm, its market segments and its model of revenue
generation), value architecture (how a firm senses, creates, distributes, and captures
values), and functional architecture (core activities of a firm, namely, product inno-
vation and commercialization, infrastructure for production and delivery, and cus-
tomer relations management) [8].

3 Business model for IoT applications

After an overview of the constructs of our proposed IoT application business-model,
we details the types of flows and types of placements and then, present the imple-
mentation of a system recommending the definition of these flows and placements.

3.1 Overview

Fig. 1 illustrates the constructs we propose to define an IoT application business-
model in the context of cloud/fog. The 2 key constructs are flow, specialized into
data and collaboration, and placement, specialized into processing and storage.

On the one hand, the flow construct is about who sends what and to whom,
who collaborates with whom, and what (time- and location-related) restrictions ex-
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Fig. 1: IoT application business-model’s proposed constructs

ist on what to send, to whom to send, and with whom to collaborate. First, the Data
Flow (DF) sheds light on how data is transferred from senders to receivers where
senders could be things and fogs, and receivers could be fogs and clouds. Second,
the Collaboration Flow (CF) sheds light on how, when, and why thing-2-thing,
fog-2-fog, and cloud-2-cloud interactions arise. On the other hand, the placement
construct is about what and how to fragment, where to store, and what (time- and
location-related) restrictions exist on what and how to fragment, and where to store.
First, the Processing Placement (PP) sheds light on how an application’s busi-
ness logic is decomposed into fragments and where the fragments are executed over
things versus fogs versus clouds. Second, the Storage Placement (SP) sheds light
on where an application’s data are spread over things versus fogs versus clouds.

3.2 Types of flows

Fig. 2 illustrates both the data flows and the collaboration flows that could be part
of an IoT application business-model. First, we rely on our previous work on cloud-
fog coordination to recommend how data flows should be formed [9, 16]. Second,
we partially rely on our previous work on fog-2-fog collaboration to recommend
how collaboration flows should be formed [1].
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Data flow
 Data flow
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Fig. 2: Data/Collaboration flows in an IoT application business-model

Data flows connect thing and fog together (DFT→F), thing and cloud together (DFT→C),
and thing and fog and cloud together (DFT→F→C

1). Compared to the work of
Thekkummal et al. who identify 2 data flows, from things to clouds and from
fogs to clouds where fogs collect data from things [13], we consider a third

1 Pre-processing data at fogs prior to sending the pre-processed data to clouds.



data flow that is from things to fogs since some data do not need to be sent
to clouds. It is worth mentioning that although our 3 specialized data flows
could simultaneously exist, we came up in [9] and [16] with 6 criteria whose
use would permit to either highly-recommend (HR), recommend (R), or not-
recommend (NR) which data flow should be formed for a particular IoT applica-
tion. These criteria are frequency (rate of data transfer from things to fogs/clouds;
the frequency could be regular, e.g., every 2 hours, or continuous), sensitiv-
ity (nature of data exchanged between things and fogs/clouds; highly-sensitive
data should not be exposed longer on networks during transfer), freshness (how
important data exchanged between things and fogs/clouds should be up-to-date,
i.e., recent), time (delay that results from withholding/processing data at the thing
level until its transfer to fogs/clouds), volume (amount of data that things produce
and send to fogs/clouds), and criticality (demands that fogs/clouds express with
regard to data of things; low demands could lead to ignoring certain data). In
support of these criteria, we made the assumption that, distance-wise, clouds are
far from things and fogs are close to things. In Table 1, we summarize how the
aforementioned criteria, taken independently from each other, assist with recom-
mending the formation of specific data flows: T → C, T → F, and T → F → C.
More details about these recommendations are presented in [9].

Table 1: Recommendations to form data flows when criteria are separated ([9])

Criterion Features T → C T → F T → F → C
Frequency Continuous stream NR HR R

Regular stream
Short gaps NR HR HR
Long gaps R R R

Sensitivity High NR HR HR
Low R R R

Freshness Highly important NR HR R
Lowly important R R R

Time Real-time NR HR HR
Near real-time R HR HR
Batch-processing HR NR NR

Volume High amount HR NR NR
Low amount NR HR R

Criticality Highly important HR HR R
Lowly important NR HR HR

- Frequency criterion is dependent on the data stream between things and
clouds/fogs. If the stream is continuous (non-stop), then it is highly recom-
mended to involve fogs in all interactions so, that, direct data-transfer to
clouds is avoided (i.e., low-latency and low-delay jitter). If the data stream
is regular, recommendations will depend on how short versus long the gaps
are during data transfer.

- Sensitivity criterion is about the protection measures to be put in place during
data exchange between things and clouds/fogs. If the data is highly sensitive,
then it is highly recommended to involve fogs in all interactions so, that, pro-
tection is ensured. Otherwise, data could be sent to clouds and fogs.



- Freshness criterion is about the data quality to maintain during the exchange
between things and clouds/fogs. If the data needs to be highly fresh, then it
is highly recommended to involve fogs in all interactions (i.e., subject to be
aware of the location of fogs and support to real-time interactions is provided).
Otherwise, data could be sent to clouds and/or fogs.

- Time criterion is about how soon data is made available for processing. If it
is real-time processing, then it is highly recommended to send data to fogs. If
it is near real-time (i.e., minutes are acceptable) then it can be sent to clouds
and/or fogs. Otherwise, cloud is ideal for data batch-processing.

- Volume criterion is about the space constraint over the amount of data col-
lected/produced by things. If this amount is big, it is highly recommended to
send data directly to clouds. Otherwise, data could be sent to fogs. In case of a
big data amount and data is divisible, then data could be sent over to multiple
fogs (i.e., distributed geo-distribution).

- Criticality criterion is about ensuring data availability according to fog/cloud
demands. If fog/cloud demands are highly important, then it is highly recom-
mended that data should be sent to fog/cloud regardless of the hop number
(i.e., geo-distribution).

Contrarily to what we did in [9] where frequency, sensitivity, freshness, time,
volume, and criticality criteria were taken independently from each other, we
combined them all using a fuzzy logic-based multi-criteria decision making ap-
proach [16]. This approach was demonstrated using a healthcare-driven IoT ap-
plication along with an in-house testbed that featured real sensors (temperature
and humidity DHT11) and fog (rPi2) and cloud (Ubidots) platforms. During the
experiments, we modified the frequency of streaming data (every 3 second, 5 sec-
ond, 7 second, and randomly) for each of the 3 data flows, T → C, T → F,
and T → F → C, and the volume (around low and high amount) and criticality
(around low and high important) of the transmitted data. Upon data messages
receipt at an end-point whether fog or cloud, we timestamped these messages
prior to storing them. Table 2 includes 2 out of 4 scenarios that summarize the
experiments we conducted with focus on the recommendations of forming spe-
cific data flows: T → C, T → F, and T → F → C. More details about these
recommendations are presented in [16].

Collaboration flows connect things together (CFT2T), fogs together (CFF2F), and
clouds together (CFC2C) using offloading mechanism that would allow to main-
tain “acceptable” loads over things, fogs, and clouds. It is not mandatory that the
3 specialized collaboration flows simultaneously exist since this would depend
on satisfying under-execution IoT-applications’ functional and non-functional
requirements. For illustration, we demonstrate how a collaboration flow be-
tween fogs could be formed based on our previous work on improving fog per-
formance [1]. We expect adopting the same strategy when developing both col-
laboration flows between things and collaboration flows between clouds.
The ICT community already agrees that fog is not a substitute to cloud but a com-
plement; both should work hand-in-hand [2, 9]. As per Section 2, fog can support,



Table 2: Recommendations to form data flows when criteria are combined ([16])

Scenario # Criteria Linguistic values Recommendations

Scenario 1

Frequency Regular stream (around short and long gaps)? T → C is NR; T → F is R;
T → F → C is R

Sensitivity Around low and high?

Freshness Highly important
Time Real time
Volume High amount
Criticality Lowly important

Scenario 4

Frequency Regular stream long gaps T → C is R; T → F is R;
T → F → C is R

Sensitivity Low
Freshness Lowly important
Time Near-real time
Volume High amount
Criticality Around lowly and highly important?

?: Around Val1 and Val2: both Val1 and Val2 meet the scenario’s requirements.

serve, and facilitate services that cloud does not cater well for their needs and re-
quirements. These services are known for being latency sensitive, geo-distributed
(e.g., water-pipe monitoring), mobile with high-speed connectivity (e.g., con-
nected vehicles), and largely distributed (e.g., smart energy distribution). How-
ever, despite the benefits of fog computing, it happens that fogs working in silos
cannot accommodate these services’ processing, storage, and communication re-
quirements. Compared to clouds, fogs mean less resources, less reliability, and
less latency [7]. Promoting offloading among fogs could be an option, leading to
the formation of collaboration flows between fogs according to their ongoing
loads and availabilities of their processing, storage, and communication capabil-
ities. This offloading has been the focus of our work in [1].
In compliance with Fig. 2, things periodically collect and generate data from the
cyber-physical surroundings and send them to fogs (DFT→F) and/or clouds (DFT→C)
for processing/storage as deemed necessary. A fog can serve a certain number of
requests instantly or offload some to other fogs in the same domain if this fog is
congested, which could delay processing these requests. It is worth noting that
the importance of fogs being located between things and clouds, makes fogs more
accessible/reachable to both things and clouds. Therefore, fog can be used hor-
izontally (i.e., CFF2F) and vertically (i.e., DFT→F→C) in the network to provide
the desired services.
By analogy with CFF2F, CFT2T and CFC2C could be formed allowing to develop
federations of things and federations of clouds, respectively. Communications in
all federations could be either planned where links among nodes, i.e., things,
fogs, and clouds, are known at design-time and according to a specific business
model or ad-hoc where links among nodes are formed on the fly and some-
times opportunistically. CFT2T and CFC2C would require a coordination model
at the thing level and cloud level, respectively, to ensure that a better load bal-
ancing among things and among clouds would be achieved. For instance, the
decision of a cloud to collaborate with other clouds to support the processing of
a received service’s request would depend on the response time. Generally, the



response time of a task on a cloud will be computed based on the time required to
wait in the queue (in case of loaded cloud), the time to process the received task
on the cloud, and the response travel-time that includes both transmission and
propagation delays. Meantime, since it is a distributed model, the cloud sends
requests for collaboration to all neighboring nodes within its domain to examine
the possibility of providing a quicker response time, especially for time-sensitive
services. It is worth noting that request-and-response times are considered part
of service latency.

3.3 Types of placements

Fig. 3 illustrates both the processing placement and the storage placement that
could be part of an IoT application business-model. In this figure, appropriate IT fa-
cilities run on top of clouds, fogs, and things to support the deployment of these
2 types of placements.

To work out and illustrate the details about processing placement and stor-
age placement, we assume an IoT application that runs on top of a Business
Process Management System (BPMS) coupled to a DataBase Management Sys-
tem (DBMS). Therefore, this application’s business logic is designed as a set of
Business Processes (BPs) that manipulate a set of DataBases (DBs). For the pro-
cessing placement, we present some initiatives that examine BP fragmentation
where each process fragment would be processed on top of either things (though
unlikely), fogs, or clouds. For the storage placement, we present some initiatives
that examine data fragmentation where each data fragment would be stored in
things (though less likely), fogs, or clouds. Due to lack of space, only the process-
ing placement is discussed.
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Fig. 3: Processing/Storage placements in an IoT application business-model

Processing placements identify physical locations where an IoT application’s
BP fragments would be deployed for processing. BP fragmentation has been
the subject of many studies shedding light on its rationales, techniques, chal-
lenges, benefits, and consequences. Hereafter, we briefly present the works of
Cheikhrouhou et al. [4] and Hou et al. [6]. The first two carry out BP fragmentation



over clouds/fogs and clouds, respectively, and the last one carries out BP fragmen-
tation in the context of IoT.

Saoussen et al. report that with the continuous advances in ICT and orga-
nizations’ changing needs, cloud computing has shown some signs of “fatigue”
when for instance, real-time applications call for almost zero time-latency. Trans-
ferring data to distant clouds is a potential source of delays and opens doors to
unwanted interceptions. Luckily, fog computing addresses some clouds’ concerns
like latency and security. Building upon a previous approach to formally spec-
ify and verify cloud resources allocation to BPs using Timed Petri-Net (TPN),
Saoussen et al. extended this approach by fragmenting and deploying free-of-
violations time-constrained BPs in a mono-cloud and multi-fog context. They re-
sorted to cloud-fog collaboration by verifying at both design-time and run-time
where tasks should run (cloud, fog, or either) and where data should be placed
(cloud, fog, or either). During BP fragmentation, Saoussen et al. defined DD(datai, ti, tk, h

s
i , h

s
k)

that is data dependency between task ti that produces datai and task tk that con-
sumes datai when ti is executed in the host hs

i and tk is executed in another host hs
k

where a host could be either cloud or fog with respect to Fig. 3.
Hou et al. explore BP fragmentation for distribution purposes with emphasis on

IoT-aware BPs. These BPs have to cope with the high volume and velocity of
data that IoT generates and hence, need to be transmitted and processed timely.
The authors propose a location-based fragmentation approach to partition a BP
before applying Kuhn-Munkres algorithm so, that, an optimal deployment of BP
fragments is achieved. Fragment collaboration takes place through a topic-based
publish/subscribe infrastructure, which allows to reduce network traffic and save
process execution-time.

3.4 System implementation

This section demonstrates a Recommender System (RS) that we developed to pro-
vide recommendations for data flows and processing placement as part of our
IoT application business-model in the context of cloud/fog. The RS is associated
with a Deep Leaning (DL) model that takes as inputs a network topology’s con-
stituents (i.e., number of things, number of fog nodes, and number of cloud nodes)
and criteria weights (Table 1), and produces as outputs data flows and processing
placement recommendations.

Deep learning model. The core of our RS is a DL model that is built in MAT-
LAB on Intel core i7-6700HQ, CPU 2.60GHz, GPU GTX 1070, and RAM 32GB.
This model is a multi-layer classifier that extracts features from the weighted input
criteria in order to produce suggestions labeled as highly-recommended.

During the implementation, a sequential development approach (also called
feed-forward nn model) is adopted allowing each layer’s output to be transferred
to the next layer and so on. The DL model consists of 5 layers distributed over
1 layer for input, 1 layer for output, and 3 hidden layers for transformation having
20, 20, and 15 neurones, respectively. The hidden layers are used to avoid or help in
preventing overfitting. It is worth noting that we experimented more/less number of



layers and different number of neurons to get the best accuracy and faster processing
time when providing recommendations.

The data used for training was generated by using the 6 criteria related to data
flow namely, frequency, sensitivity, freshness, time, volume, and critically. Fig. 4a
shows the correlation matrix for the trained data based on these criteria as well as
the possible data flows. Hence, the data flow classes/labels are Flow 1, Flow 2,
Flow 3, and Flow 4 referring to T→C, T→F, T→C and T→F, and finally T→F
and T→F→C, consecutively. From Fig. 4a, we note the data independent and not-
related to each other, hence there will be no direct/common indications or features
between input data and possible output recommendations. Before the training pro-
cess, a sequence of operations have been applied to input data, such as manipulate
the missing data by mean substitution and normalize the data by standard deviation.

(a) (b)

Fig. 4: Correlation matrix and recommendation generation process

Recommendation creation. The process of generating a recommendation is pre-
sented in Fig. 4b. A Web-based system has been developed to allow a user to add
or design a desired network topology required for an IoT application. Moreover,
the IoT application’s specifications (based on the 6 criteria presented in Table 1)
can also be added to the topology and encapsulated in a JSON message. To this
end, the system forwards JSON messages (includes both criteria and topology) to a
pre-trained DL model to find the best fitting for data flows and processing place-
ment. It is worth noting that the DL model combines topology and application’s
criteria (e.g., frequency, and sensitivity) in one request to recommend the best data
flow to find the best routes to.

Results and evaluation. After passing the topology and criteria to the DL model,
the RS proceeds with predicting the best routes for data flows (i.e., T→F, T→C, etc.)
and selecting the best potential neighbor node to receive the data. For instance, if
there are 2 fog nodes that can be recommended, the RS will recommend either



Foga or Fogb based on distance (handled by the domains in the network topology)
and send rate (e.g., frequency).

The RS output consists of a predication value for each of the classes representing
our data flows, namely Flow 1, Flow 2, Flow 3, and Flow 4. The highest value
of a class represents the most recommended class. For instance, for a topology that
consists of 1 Cloud node to cover Fog and Thing nodes distributed over 3 domains
with domain1 having 1 Fog node and 2 Thing nodes, domain2 having 2 Fog nodes
and 1 Thing node, and domain3 having 1 Fog node and 1 Thing node, the output
recommendation for this topology is presented in Fig. 5. It is noted that each Thing
node has it is own criteria that lead to different predictions/recommendatiosn for the
data flow and processing placement. In this figure, the processing placement
node is the first node in the recommended flow; for instance, in T→F→C flow, the
Fog node (i.e., F) is for the processing placement.

Fig. 5: Recommendation output

4 Conclusion

This paper presented the design of a business model for IoT applications that would
be deployed on top of cloud and fog resources. This business model features 2 con-
structs, flow (specialized into data and collaboration) and placement (specialized
into processing and storage). The paper also presented the development of a sys-
tem built-upon a deep learning model that recommends how the different flows and
placements should be formed. These recommendations consider the technical capa-



bilities of cloud and fog resources as well as the networking topology connecting
these resources to things. In term of future work, we would like to complete the de-
sign of the current system by including the collaboration flow and storage placement
and to examine the impact of other criteria like privacy on the collaboration flow.
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