An analytical model to predict the temperature in subway-tunnels by coupling thermal mass and ventilation

[thumbnail of Manuscript-20210410.pdf]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Sun, T., Luo, Z. orcid id iconORCID: https://orcid.org/0000-0002-2082-3958 and Chay, T. (2021) An analytical model to predict the temperature in subway-tunnels by coupling thermal mass and ventilation. Journal of Building Engineering, 44. 102564. ISSN 2352-7102 doi: 10.1016/j.jobe.2021.102564

Abstract/Summary

There is an increasing incidence of overheating in subway tunnels in recent years especially in old subways without air-conditioning e.g., London Underground. There is still lack of a clear understanding how tunnel-air temperature is determined by the complex thermal processes in subway tunnels. In this study, a mathematical model that describes the thermal processes in deeply buried subway tunnels was developed. Analytical solution was derived by separating the solution into time-averaged component and periodic component. The results show that the time-averaged component of tunnel-air temperature will approach steady state as the time tends to infinity, which has a positive linear relation with internal heat-source and average ambient temperature. Active cooling or heat-recovery systems could soon become a necessity in subway tunnels due to both global warming and increasing internal heat generation. Compared with outdoor air, the amplitude of the tunnel-air temperature shows a significant reduction in the day period but not in the year period. The surrounding soil temperature will keep changing for thousands of years. This study offers a new physical insight to analyse and mitigate overheating in subway tunnels.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/97472
Identification Number/DOI 10.1016/j.jobe.2021.102564
Refereed No
Divisions Science > School of the Built Environment > Urban Living group
Science > School of the Built Environment > Energy and Environmental Engineering group
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar