UoR at SemEval-2021 task 12: on crowd annotations: learning with disagreements to optimise crowd truth

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of SemEval2021_Task_12.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Osei-Brefo, E., Markchom, T. and Liang, H. (2021) UoR at SemEval-2021 task 12: on crowd annotations: learning with disagreements to optimise crowd truth. In: SemEval-2021, 5-6 August 2021, Bangkok.

Abstract/Summary

Crowd sourcing has been ubiquitously used for annotating enormous collections of data. However, the major obstacles of using crowd-sourced labels are noise and errors from non-expert annotations. In this work, two approaches dealing with the noise and errors in crowd-sourced labels are proposed. The first approach uses Sharpness-Aware Minimization (SAM), an optimization technique robust to noisy labels. The other approach leverages a neural network layer called crowd layer specifically designed to learn from crowd-sourced annotations. According to the results, the proposed approaches can improve the performance of Wide Residual Network model and Multi-layer Perception model applied on two crowd-sourced datasets in image processing domain.

Item Type Conference or Workshop Item (Paper)
URI https://reading-clone.eprints-hosting.org/id/eprint/97212
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar