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Abstract

The rounding of point forecasts of CPI inflation and the unemployment rate by U.S.

Professional Forecasters is modest. There is little evidence that forecasts are rounded to a

greater extent in response to higher perceived uncertainty about future outcomes. There is

clear evidence that probability of decline forecasts are rounded: over a half of the forecast

probabilities of decline in the current quarter are multiples of 10. We find that rounding

of these probabilities is correlated with worse accuracy, but are cognizant that worse (less

accurate) forecasters might round more, rather than the degree of rounding per se worsening

accuracy. By simulating the loss from rounding for a set of effi cient forecasters, we show

that the explanation that respondents round otherwise effi cient forecasts is untenable, and

that the contribution of rounding is of minor importance.

JEL: C53, D84

Rounding, survey expectations, uncertainty, forecast accuracy, histograms.
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1 Introduction

In this paper we consider the extent to which professional forecasters round their forecasts,

why they might round their forecasts, and the impact of this practice on forecast accuracy. A

reason for looking at professional forecasts is the striking degree to which consumers round

their inflation expectations when responding to surveys, as documented by Binder (2017). Un-

surprisingly, professional forecasters round their point predictions to a lesser extent. However,

surveys of professionals also elicit probability forecasts, and the probability forecasts we consider

- probabilities of declines in GDP - do portray clear evidence of rounding.

In response to the question why forecasters round, a leading explanation is that rounding is

used to convey uncertainty. In the communication and linguistic theory literature, this is known

as Round Numbers Suggest Round Interpretation (or RNRI). Binder (2017) documents evidence

in support of the RNRI principle in the finance literature, and in surveys of earnings and age,

amongst other variables.1 Provided we can measure perceived uncertainty, we can determine

whether uncertainty correlates with rounding. If it does, it seems reasonable to suppose (higher)

perceived uncertainty causes rounding, because there is no reason to suppose causality runs in

the reverse direction. However, we find little evidence that the degree of rounding is correlated

with an agent’s perception of the uncertainty she faces. Forecasts do not appear to be rounded

to convey uncertainty whether we consider the point predictions or the probabilities of decline

in GDP.

Secondly, is rounding benign in terms of forecast accuracy, or are differences between fore-

casters in terms of forecast accuracy explicable in terms of rounding practices? This is a more

diffi cult question to answer, because greater rounding (for whatever reason) might result in less

accurate forecasts, but equally a forecaster may round because she lacks the skill or knowl-

edge to make a more nuanced or precise forecast. When we consider the relationship between

rounding and ex post forecast accuracy, establishing correlation leaves the question of causation

unanswered. As an example, Manski and Molinari (2010) suppose that survey responses might

be rounded ‘to simplify communication’, or ‘to convey ambiguity’. According to Manski and

Molinari (2010), ambiguity arises when a forecaster feels unable to assign precise probabilities

to certain events, such as future inflation or output growth taking on particular values for exam-

ple, and consequently provides rounded estimates. Hence rounding to simplify communication

suggests the respondent could produce a more accurate forecast if she wished, whereas under

‘ambiguity’rounding occurs because of a lack of skill. 2

Is it possible to discriminate between rounding to ‘simplify communication’and rounding

1Some of the key studies on rounding behaviour are on the reporting of ages of young children in Tanzania
by Heitjan and Rubin (1990), as well as cigarette consumption, Wang and Heitjan (2008).

2Fischhoff and Bruine De Bruin (1999) refer to ‘total ambiguity’as the situation when the forecaster declares
‘it‘s a fifty-fifty chance’.
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because the forecaster is unable to make a more precise prediction? For the probabilities of

decline, for which there is clear evidence of rounding, we make some modelling assumptions

which allow a tentative answer to the question of whether rounding has a significant effect on

forecast accuracy. We address this issue by considering whether the forecaster could have made

a more accurate non-rounded forecast using information available at the time the forecast was

made.3

Our main findings are as follows. The professionals’forecasts of CPI and UR (unemployment

rate) are rounded to a much lesser extent than consumers’CPI forecasts. There is little evidence

that rounding is related to the perceived uncertainty surrounding the outcome, or that rounding

negatively impacts forecast accuracy. These findings may in part reflect the fact that any

rounding of the CPI and UR forecasts is modest. When we consider the U.S. SPF probability

forecasts, namely the probabilities given to the event that quarterly real GDP growth will

be negative, there is clear evidence of rounding to multiples of 5 and 10. But as for the

point forecasts, there is again little evidence of an association between rounding and perceived

uncertainty. We find rounding and forecast performance are correlated - more rounding is

associated with less accurate forecasts. We show that forecasters could have made more accurate

decline probability forecasts using real-time information, based on their output growth forecasts.

However, a simulation study suggests that any rounding of the reported probability of decline

forecasts has only a minor effect on the accuracy of the probabilities evaluated as forecasts of

the binary event of a decline in output. Moreover, assuming rounding depends on the degree

of uncertainty, for example, does not provide a better fit to the actual data, casting doubt on

the importance of this putative effect. Finally, we adapt the model of low and high-uncertainty

respondents of Binder (2017) to the probability of decline data, and derive some support for

the proposition that uncertainty and rounding are positively related.

The plan of the remainder of the paper is as follows. Section 2 briefly reviews approaches

to handling rounded data. In section 3 we analyze the rounding behaviour of the professionals’

point forecasts of the U.S. CPI inflation and UR forecasts. Section 3.1 begins by describing the

survey data, and sections 3.2 and 3.3 provide evidence based on analyzing rounding in aggregate

across time, and inter-forecaster variation, respectively. Section 3.4 provides a summary of our

findings for professional forecasters compared to the findings in the literature for consumers.

In section 4 the probability of decline forecasts are analyzed: section 4.1 considers the inter-

forecaster patterns of behaviour, and section 4.2 uses time variation for individual respondents.

Section 4.3 relates the probabilities of decline to (simultaneous) output growth forecasts. Section

5 applies the approach of Binder (2017) to the probability of decline data. Section 6 offers some

concluding remarks.

3This relates to whether the forecasts are effi cient, in the sense of Mincer and Zarnowitz (1969): see also
Clements (2020b) for an application to the U.S. SPF.
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2 Approaches to Handling Rounded Data

Much of the literature dealing with ‘coarse’data makes use of multiple imputation (MI) - a

simulation-based statistical technique - where the aim is to make ‘statistically-valid’inference,

in the sense of Rubin (1996). Multiple imputation is commonly used for missing data due to

survey non-response, but coarse data refers to any data for which the precise values of the

true data are not observed, including rounded or heaped data. Heitjan and Rubin (1990) and

Drechsler and Kesl (2016) consider coarse data which is heaped (or rounded), as in the case

of self-reported age data. Often the aim is to determine the size and statistical significance of

a putative coarsely-observed explanatory variable. Taking the rounded data at face value may

not be appropriate.

Following Heitjan and Rubin (1990), Drechsler and Kesl (2016) undertake MI by supposing

there is a model for the coarse variable of interest (e.g., that the conditional distribution of

the variable is normal given some covariates), and also for the degree of rounding, given that

typically rounding may occur to different degrees. The degree of rounding is determined by

a latent variable, which is also normally distributed conditional on some covariates. As this

variable crosses various thresholds higher degrees of rounding are invoked - the model is an

ordered probit over an assumed set of possible degrees of rounding.

Applying MI in the context of analyzing the rounding behaviour of survey respondents would

require specifying a model for the variable of interest (the forecast) and for the determinants

of rounding behaviour. But surveys of expectations are typically undertaken without recourse

to anything other than the forecasts (and actual values) typically because we do not know how

the forecasts have been made (in terms of the models, techniques and judgment which have

been applied). In most of the paper we do not attempt modelling, but an exception is when the

forecast probabilities are related to the output growth forecasts. For the most part we consider

what can be learnt from considering the relationships between rounding, and ex ante and ex

post uncertainty, using the reported forecast data (the potentially rounded data), measures

derived from the histograms, and the actual data.

Binder (2017) is an attempt to model the forecast generation process and the rounding

decision: respondents are assumed to be of two types, either high-uncertainty or low-uncertainty.

High-uncertainty forecasters choose rounded responses, while low-uncertainty forecasters choose

integer-valued forecasts. That is, she makes the implicit assumption of RNRI - high-uncertainty

agents choose rounder responses. In section 5 we apply her approach to the probabilities of

decline, but the relatively small number of forecasts at our disposal restricts the application of

her approach.

When an individual makes multiple responses to the same survey, or responds to multi-

ple surveys over time, Manski and Molinari (2010) suggest using the pattern of rounding of

responses to infer an individual’s rounding practice, and provide an algorithm to generate in-
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terval data to replace the reported rounded values. This approach was applied to the SPF

probability of decline forecasts by Clements (2011).

3 Point Forecasts of Inflation and the Unemployment Rate

3.1 Forecast data and the choice of variable

In this section we describe the forecast data, and provide a first look at the rounding of the

point forecasts. We use the U.S. Survey of Professional Forecasters (SPF) as the source of data

on professional forecasters. The SPF is a quarterly survey of macroeconomic forecasters of the

U.S. economy that began in 1968, administered by the American Statistical Association (ASA)

and the National Bureau of Economic Research (NBER). Since June 1990 it has been run by

the Philadelphia Fed, renamed as the Survey of Professional Forecasters (SPF): see Croushore

(1993). The SPF is made freely available by the Philadelphia Fed, allowing results to be

readily reproduced and checked by other researchers. Its constant scrutiny is likely to minimize

the impact of respondent reporting errors. An academic bibliography of the large number of

published papers that use SPF data is maintained4 and listed 101 papers as of January 2019.

As well as providing the point forecasts and probability of decline forecasts which are our main

focus, it also provides histogram forecasts which allow the construction of measures of perceived

uncertainty.

We consider the CPI inflation forecasts because inflation forecasts have been more exten-

sively studied than perhaps any other variable, and because consumer surveys of inflation are

also available, allowing a comparison of the rounding practices of consumers and professional

forecasters in section 3.4. We consider the annual fourth-quarter over fourth-quarter CPI in-

flation forecasts for the current year of the 154 quarterly surveys from 1981:3 to 2019:4. Our

sample includes the forecasts from the 127 individuals who responded to a minimum of 12 sur-

veys. The survey also reports these forecasts for the next year, and we analyze these as well. 5

These forecasts are fixed-event in nature, in the sense that the current-year forecasts made in

the surveys Q1 to Q4 are of the same target ("event") with a shortening horizon as the year

progresses. We also considered the annual unemployment rate forecasts. These are again of the

current year and next year, but are the annual averages of the underlying monthly levels. 6

Throughout the paper, actual values are taken from the Real-Time Data Set for Macro-

economists (RTDSM).7 For example, for the current year forecasts for the surveys in 2005,

4http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-forecasters/academic-
bibliography.cfm.

5Also reported are the annualized quarter-over-quarter percent changes of the quarterly average price index
level. But annual forecasts, rather than quarterly forecasts, would appear to better match the MSC consumer
expectations.

6As of 2009:Q2, density projections for the civilian unemployment rate were also elicited.
7Available at:
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we use the data available in the 2006:Q1 vintage to construct the actual 2005:Q4 on 2004:Q4

inflation rate, and for the annual average 2005 unemployment rate. For the next year forecasts

from the same surveys the actuals are taken from the 2007:Q1 vintage of data.8 However, the

revisions to UR and CPI are typically small, compared to the revisions made to the national

accounts data (e.g., GDP and the GDP deflator) and so the choice of actual values is likely to

be inconsequential. This is not true of the National Income and Product Accounts data such

as GDP, which we use subsequently, and which are subject to significant revisions - Clements

and Galvão (2019) provide a recent review.

The forecasts were recorded to one decimal place prior to 1990, and thereafter to up to two

decimal places. We assume a forecasts is rounded if it is a multiple of 0.5%, and so takes on

one of the following distinct values {. . . , 2.0, 2.5, 3.0, 3.5, . . .}. Table 1 records the total number

of forecasts of each variable, and the proportion which are expressed as a multiple of 0.5, or

0.1 (i.e., given to one decimal place). If forecasts were recorded to one decimal place, then

multiples of 0.5% would be expected to arise 20% of the time if no special significance were

attached to such numbers. The observed proportions of multiples of 0.5 (of the forecasts given

to one decimal places) are not much greater than this. Even so, we establish in section 3.3 that

there are differences between respondents, which we investigate.

Moreover, because forecasts could have been recorded to two decimal places (after 1990),

then we would only expect multiples of 0.5 to arise 0.2% of the time, a factor of a hundred less

than we observe. Presumably a forecast of 2.51, for example, reflects a model-based forecast

which has not been rounded. One might be skeptical of non-model based forecasts which

are given to two decimal places. This suggests that rounded forecasts are either judgmental

(i.e., non-model based forecasts) or model-based forecasts with judgment applied, and that a

preponderance of non-rounded forecasts would suggest unadjusted model forecasts. De facto we

are seeking to explain the use of judgment (with or without a model) versus automatic forecast

generation using a forecasting model or system.

SPF respondents make point forecasts of a range of other variables too. We have selected

two headline variables. Both variables are reported to the survey, and recorded in the survey,

as percentages (inflation) and rates (unemployment). Other popular choices such as real GDP

may be reported as either a level or growth rate, but in either case are recorded as levels.

For many purposes this is incidental, but for analyzing rounding behaviour it means that the

rounding intended by the respondent may be affected by the calculations undertaken by the

Survey.9

https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data
The RTDSM allows us to use the data vintages which were available at a specific point of time.
8For the CPI, the first quarterly data vintage is 1994:Q3, so the actuals up to and including 1994 are from

the 1995:Q1 vintage, thereafter they are as described in the text.
9See Clements (2015, p. 376) on this point.
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The U.S. SPF also provides probability forecasts for a smaller number of variables, in

the form of histograms, allowing for the construction of measures of perceived uncertainty.

Our assessment of rounding draws on all three types of forecasts. Measures of perceived (or

ex ante) uncertainty, EAU, have been compared by Clements (2014) (see also Knüppel and

Schultefrankenfeld (2019)) to realized or ex post uncertainty, EPU. EAU is calculated from the

histogram forecasts in advance of the outcome being revealed, whereas ex post uncertainty is

the squared forecast error (or the MSFE) of the variable in question.10 EAU will be used to

determine whether perceived uncertainty is correlated with rounding behaviour.11

Finally, the U.S. SPF provides probabilities of the event that real GDP will decline in the

coming quarters, and we use these in section 4.

3.2 Aggregate measures of rounding

We begin by considering an aggregate index of rounding calculated as the proportion of re-

sponses to each survey which are a multiple of 0.5, henceforth denoted by the shorthand ‘M5’.

We run regressions of the time series of the proportion of rounded responses on dummies to

denote the quarter of the year of the survey. Given the fixed-event nature of the forecasts, the

quarter of the year of the survey determines the forecast horizon. Because uncertainty generally

increases in the forecast horizon, the literature discussed in the Introduction suggests the quar-

ter of the survey should be a significant determinant of the degree of rounding if uncertainty

and the degree of rounding are related. In addition to the effect from the shortening horizon as

the survey quarter moves through the year, we include ex ante measures of macro uncertainty,

which typically move counter-cyclically. Macro uncertainty at time t is measured by the cross-

sectional median of the individual histogram variances of GDP deflator inflation, for the CPI

regressions, and by the histogram variances of GDP growth, for the unemployment rate. (We

use either the current-year or next-year histograms as appropriate to match the current and

next-year CPI and UR forecasts).

The regression results in table 2 for CPI indicate none of the survey-quarter dummies, or

macro uncertainty, are significant at the 5% level for the current year. (We include a constant

and three dummies, for Q2, Q3 and Q4). This is true for the whole sample, as well as for the

various sub-samples we consider.12 A time trend was included and this is generally negative

10We can only measure ex ante uncertainty directly for GDP growth and the GDP deflator, as we only have
histograms for these two variables. This is a shortcoming which might hinder our ability to detect rounding to
convey uncertainty.
11 If a forecaster’s EAU and EPU were closely correlated, it would be diffi cult to discern whether perceived

uncertainty and rounding are correlated, as distinct from forecast performance and rounding being correlated.
Clements (2014, Table 5, p.214.) suggests EAU is a poor predictor of EPU across individuals.
12The sub-samples are selected as follows. The survey changed hands in 1990:3, and was subsequently admin-

istered by the Phildadelphia Fed, with new operating procedures. We consider the periods before and after the
change of administration separately. (Engelberg, Manski and Williams (2009) only consider the post 1990 period
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and significant when the dependent variable is the proportion of M5 forecasts, suggesting a long

term move away from M5. This coincides with more forecasts being reported to two decimal

places over the period (for both variables), and when we divide the dependent variable by the

proportion of forecasts reported to one decimal place, the size of the coeffi cient on the trend is

reduced, and is insignificant for the period before 1990:4, and after 2005:4.

For the next-year CPI forecasts, the dummy for Q4-surveys is negative and statistically

significant (for the whole sample, and for a number of the sub-samples, but not the post-Crisis

period), suggesting the degree of rounding is lower (than for the Q1-surveys), consistent with

the view that respondents round less when the horizon is shorter. Although as noted, a similar

phenomenon is not observed for the current-year CPI forecasts. For the next-year CPI forecasts

we also find a significant, positive effect from macro-uncertainty for the whole period when the

dependent variable is expressed as a proportion of the forecasts reported to one decimal place.

For the current-year unemployment rate forecasts the survey-quarter effect is insignificant

(see table 3), but macro-uncertainty is significantly negative for the period, for both definitions

of the dependent variable, which is contrary to the conventional wisdom, and is explored below

by exploiting inter-forecaster variation.

For the next year forecasts, there is evidence that the degree of rounding is lower for the Q4

surveys, matching the finding for the next-year CPI forecasts. The Q4 dummy is statistically

significant at the 5% level for the whole period, and at the 10% level for some of the sub-periods.

But unlike for the next-year CPI forecasts, there is no evidence that macro-uncertainty affects

the degree of rounding.

To conclude, the current-year forecasts of both variables do not appear to be influenced by

seasonal variation in uncertainty from the fixed-event nature of the forecasts. The rounding

of the next-year forecasts is lower for the less uncertain short-horizon Q4 forecasts. Somewhat

surprisingly business-cycle variation in macro uncertainty is negatively associated with the

rounding of current-year UR forecasts. It is positively associated with the rounding of next-

year inflation forecasts.

The evidence based on aggregate data is mixed and does not always point in the same

direction. Individuals’rounding behaviour may respond to their own perceptions of the uncer-

tainty of the outlook, and the relationship between uncertainty and rounding may vary across

individual. With this in mind, we turn to an individual-level analysis of rounding behaviour.

3.3 Variation across individuals

Figures 1 to 4 depict the cross-sectional variation in the propensity to round, where the propen-

sity to round is calculated as the proportion of the respondent’s forecasts which are an exact

as being potentially more reliable). We then split the post-1990 period roughly in half to see whether there were
any effects of the Financial Crisis.
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multiple of 0.5. Each bar shows the proportion of forecasts rounded by a respondent, and the

respondents are ranked by least to most. A horizontal line would indicate no inter-forecaster

variation in rounding propensity. For both variables and target periods, there are clear differ-

ences across forecasters - some do not round, while those who round the most do so for between

40 and 60% of their forecasts (with the occasional individual who always rounds). We can use

the variation in propensity to round across individuals to investigate the relationship between

rounding and perceived uncertainty, and forecast accuracy.

As discussed in the introduction, if more able respondents round less, we ought to find that

forecasters who round more (as measured by the proportion of their forecasts which are M5)

make less accurate forecasts on MSFE. We control for the economic conditions the respondents

faced. Otherwise, those who were active during diffi cult times, such as the 2008-9 period, would

have larger uncertainty measures for this very reason. Both our measures of EAU and EPU are

calculated as relative measures. For the ex post uncertainty, we normalize forecast errors by

dividing by the average degree of diffi culty experienced in forecasting at that point in time, as

measured by the (square root) of the cross-sectional MSFE. This follows D’Agostino, McQuinn

and Whelan (2012) and Clements (2014). Specifically, if ei,t denotes the forecast error made by

individual i, in response to forecast survey t (the horizon is left unspecified for simplicity), we

calculate the normalized forecast errors as:

ẽi,t =
ei,t√√√√ 1

Nt

Nt∑
j=1

e2j,t

(1)

where Nt is the number of respondents to survey t. This approach implements an ex post

adjustment to each forecast error, based on the realized forecast loss, to prevent inter-forecaster

comparisons of accuracy being distorted. For each of the 127 respondents, we then calculate

MSFEi as the average squared error of ẽi,t over all the surveys t to which individual i responded.

For the EAU of respondent i, we first divide the estimate of the histogram variance13 at time

t, denoted σ̂2i,t, by the cross-sectional average of all the active participants at t:

σ̃2i,t =
σ̂2i,t

1
Nt

Nt∑
j=1

σ̂2j,t

and then take the average of σ̃2i,t over all the surveys to which i contributed. We have estimates

13We estimate the variances by fitting normal distributions to the histograms when non-zero probability mass
is assigned to 3 or more (consecutive) intervals, and triangular distributions otherwise (as described by Engelberg
et al. (2009, p.37-8)). See Clements (2019) for a discussion.
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of EAU for output growth and GDP deflator inflation. For both variables the histograms are

of the annual growth rates in the current calendar year relative to the previous year, and of the

next year relative to the current year. We use the output growth variance estimates to measure

EAU regarding the unemployment rate, and the GDP deflator for CPI inflation.14

We test for significant correlation between the propensity to round, EAU, and forecast

accuracy, allowing that the relationship need not be linear. We consider the relationship between

the ranks - whether the individuals who are highly ranked in terms of rounding, are also highly

ranked in terms of MSFE, or in terms of their perceived uncertainty. The Spearman rank

correlation r lies between -1 and 1, where 0 indicates no relationship. The rank correlation

given by:

r = 1− 6R

N (N2 − 1)

where R is the sum of squared differences between the ranks (of the forecasters by degree of

rounding, and by the size of MSFE, say).15

Table 4 shows some evidence that rounding and forecast performance are negatively asso-

ciated (i.e., the degree of rounding and MSFE are positively related) for the longer horizon

forecasts (the ‘next year’forecasts), but not for short horizons. We formally reject the null of

no correlation for the UR forecasts (at the 10% level in a two-sided test), but would only reject

at the 20% level for the CPI next-year forecasts.16

The results based on the cross-sectional variation also suggest that rounding is not related to

the perceived uncertainty surrounding the outcome (Table 4, panel B). There is no evidence that

perceived and realized uncertainty are correlated across respondents at conventional significance

levels for either variable at either horizon: see panel C of table 4. The final panel of table

4 reports the rank correlation of the ratio of the EAU to MSFE with rounding propensity.

14Because the CPI inflation forecasts are of Q4 on Q4, the EAU and CPI forecast target periods are not
exactly aligned. Unfortunately, histogram forecasts of CPI and UR were only added to the survey in 2007 and
2009, so that using these to derive measures of EAU would dramatically shorten the number of available forecast
observations.
15 It is common to calculate the Fisher transformation,

F (r) =
1

2
ln
1 + r

1− r

such that z = F (r) .
√

N−3
1.06

∼ N (0, 1) under the null of statistical independence. As well as reporting r, we

report the probability of observing a test statistic less than that obtained under the null hypothesis (of a zero
correlation). Probabilities less than 0.05 or greater than 0.95 indicate rejections of the null in a two-sided test at
the 10% level. A probability less than 0.05 suggests a negative correlation, and one greater than 0.95 a positive
correlation.
16We group the current-year forecasts together, and similarly for the next year forecasts. The former have

aproximate horizons of 1 to 4-quarters ahead, and the latter of 5 to 8 quarters ahead. In principle one could
consider the relationship between rounding and accuracy at a particular horizon, e.g., 8 quarters ahead, if we
considered only the next-year forecasts made in response to Q1 surveys. In practice this would mean that the
estimates of rounding proportions and MSFE-accuracy would be based on only a quarter as many forecasts.
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Clements (2014) finds that forecasters’perceptions of uncertainty (EAU) exceed realized or ex

post uncertainty at within year horizons, suggesting ‘under-confidence’. Beyond one year he

finds evidence of over-confidence, as do Binder, McElroy and Sheng (2019) for the ECB Survey

of Professional Forecasters. Kenny, Kostka and Masera (2014) report similar findings, as do

Glas and Hartmann (2018). Our results suggest no relationship between under/over-confidence

and rounding, but we stress that rounding and MSFE are calculated for the individual’s point

forecasts of CPI and UR, and EAU from the histogram forecasts of the GDP deflator and real

GDP growth.17

We do not focus on the possible rounding of the histogram forecasts in this paper, but it

is worth noting in passing that the effect of rounding on the histogram variances is not clear

a priori, and will depend on the form the rounding takes. The form of rounding envisaged by

Engelberg et al. (2009, Appendix, pp.40-1) does not affect EAU. They suppose that rounding

can be modelled by considering two cases: in the first they subtract 0.05 of mass from the

lowest bin used and put it in a bin immediately above the highest bin used (their ROUND-UP

strategy), and in the second, they subtract 0.05 from the highest bin used and add it to the bin

below the lowest used (ROUND-DOWN). Their intention is to make an allowance for rounding

when they calculate bounds on permissible estimates of the central moments of the histograms,

but notice their approach leaves the histogram variance (EAU) unchanged.18

In summary, neither the aggregate time-series regressions or the rank correlations between

individuals’ estimates of rounding propensity and perceptions of forecast accuracy lend un-

equivocal support to the proposition that professional forecasters round more when they face

a more uncertain outlook. There is no evidence that rounding of forecasts of the current year

(either CPI or UR) is positively associated with less accurate forecasts.

3.4 Comparison of Professional Forecasters and Surveys of Consumers: Round-
ing of Point Forecasts

In this section we compare our results on rounding by professional forecasters to those found

by Binder (2017) for consumers.

The MSC consumer inflation expectations analyzed by Binder (2017) are surveyed every

month, and refer to "the next 12 months".19 The closest inflation forecasts in the SPF are the

17A caveat is that neither the variable definitions (e.g., CPI versus GDP deflator, and UR versus GDP), target
periods or horizons line up perfectly, but the evidence is consistent with Clements (2014) where caveats related
to different variable definitions do not apply.
18As pointed out by a referee, another possibility is that rounded histograms have fewer small probabilities in

the more extreme bins, which would reduce EAU. Undoing rounding of this type would further inflate the degree
of short-horizon under-confidence found by Clements (2014). Glas and Hartmann (2018) investigate rounding
of the histograms and find that respondents who report non-rounded forecasts exhibit less over-confidence than
the rounders.
19The survey question is phrased as ‘By about what percent do you expect prices to go (up/down) on the
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annual fourth-quarter over fourth-quarter CPI inflation forecasts for the current year. Although

the MSC forecasts are integer-valued, those of the SPF are not, and after 1990 are recorded

to two decimal places. Binder (2017) finds that nearly a half of the 219,181 responses to the

monthly MSC surveys between January 1978 and December 2013 are multiples of 5%. Perhaps

not surprisingly, the respondents to the U.S. Survey of Professional Forecasters report point

forecasts of inflation and other variables which are far less coarse, and evidence of rounding is

less readily apparent.

Our results also suggest that rounding by professional forecasters is not related to the per-

ceived uncertainty surrounding the outcome: there is no evidence that professional forecasters

who round more tend to be individuals with higher measures of ex ante forecast uncertainty.

This is also at odds with the behaviour of consumers. Using the Federal Reserve Bank of

New York Survey of Consumer Expectations (SCE), which provides point predictions and den-

sity forecasts of inflation, Binder shows that higher inflation uncertainty, as measured by the

inter-quartile range of an individual’s inflation density forecast, is positively correlated with the

rounding of the point forecast, supporting RNRI for consumers’inflation forecasts.20

4 Probability forecasts of Decline in GDP

In this section we consider the relationship between the rounding of the probability of decline

forecasts, forecast accuracy, and uncertainty. Clements (2011) has looked at whether rounding

accounts for the mismatch documented by Clements (2009) between respondents’probability

forecasts of a decline in real output, and the implied probabilities of this event from their his-

tograms for annual real output growth and point forecasts of quarterly output growth. Clements

(2011) shows that the mismatch is reduced by allowing for plausible patterns of rounding be-

haviour (of both the histograms and decline probabilities), but that the overall findings are

qualitatively unchanged.

We consider the individual probability of decline forecasts from 1981:3 to 2019:4 surveys.

The probability of decline forecast phj,t is the forecast probability reported by respondent j, to

the survey in quarter t, of the event that the level of real output will be lower in quarter t+ h

than t + h − 1. The respondents provide forecasts for h = 0, 1, . . . 4, where h = 0 refers to a

forecast of a decline in output in the current quarter (the survey date quarter) relative to the

previous quarter, and h = 4 is a forecast of the same quarter a year ahead relative to three

quarters ahead.

Table 5 shows that 85% of the current quarter forecasts are reported as multiples of either

average, during the next 12 months?’
20Binder (2017) measures ‘rounding’as the probability that the forecast has been rounded. The same is true

(although the result holds a little less strongly) if a dummy to denote rounding to a multiple of 5 is used instead
of the probability of rounding.
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5 or 10. This edges up to 88% for the forecasts of a quarterly decline a year ahead. This might

suggests little evidence that rounding is done to convey uncertainty: the proportion of longer-

horizon forecasts which are rounded is similar to that for the current year forecasts. In addition,

the proportion of forecasts which are multiples of 10 is 52 to 55% for all horizons. However,

the higher proportion of zero-probability current-quarter forecasts might partly camouflage

evidence of rounding to convey uncertainty. Excluding the zero-forecasts leads to an increase

in rounding to a multiple of 5 from 64% to 83% as the horizon increases.21

Figure 5 ranks each of the 127 forecasters we consider from the individuals who round the

least to the two who round all their forecasts to a multiple of 10. The vast majority round

between 20% and 80% of their forecasts. We consider whether the inter-forecaster differences in

propensities to round are associated with differences in average perceptions of uncertainty. That

is, whether some individuals beliefs are persistently more uncertain than those of others. Also

of interest is whether the differences in rounding behaviour cause some respondents to be worse

than others. The observed differences across individuals in rounding behaviour suggests that

an analysis of inter-forecaster variation should be informative about the relationship between

rounding and uncertainty.

4.1 Inter-forecaster Variation

To assess forecast accuracy, the probability forecasts are compared to the event of a decline

in real GDP calculated from the data vintage available at the time. For example, the current

quarter forecasts from the 1981:3 survey are compared to the event of a decline between GDP

in 1981:3 and 1981:2, both taken from the 1981:4 data vintage. And the 1981:3 survey h = 4

forecasts are compared to the change between 1982:2 and 1982:3 actual values from the 1982:4

vintage of data. We score the probability forecasts using the Brier or quadratic probability

score (QPS: Brier (1950)), which is simply the expected squared error E
[
(p− y)2

]
, where p is

the probability, and y takes the value of 1 when the event occurs, and zero otherwise.22 For a

sequence of probability forecasts and outcomes, {pt, yt}, t = 1, . . . , n, these scores are calculated

as:

QPS =
1

n

n∑
t=1

(pt − yt)2 . (2)

21One might expect the forecast probability of a decline to approach the relative frequency of declines as the
horizon increases, resulting in fewer zero-probability forecasts.
22We use QPS rather than the logarithmic probability score (LPS: see Brier (1950) and Good (1952)), defined

as E [−y log (p)− (1− y) log (1− p)] because of the occurrence of zero-probability forecasts.
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As for the point forecasts, we normalize the QPS for individual i by:

QPSi =
1

ni

∑
t∈Ni

 pti − yt√
1
Nt

∑Nt
j=1 (pt,j − yt)2

2

where Ni is the set of surveys (numbering ni) that i responded to, and Nt is the dimension of

the cross-section for survey t.

Table 6 presents rank correlation tests between rounding and accuracy and uncertainty

across individuals. We consider rounding to 10, and rounding to 5. Firstly, consider the coarser

rounding to 10. If a forecast probability of zero is assumed to reflect a rounded forecast, the

table suggests rounding and forecast loss are positively related (i.e., more rounding reduces

accuracy) for the longer-horizon h = 4 forecasts, but not for the current quarter forecasts.

In addition, more perceived uncertainty is associated with less rounding. Treating the zero

probability forecasts as being rounded is problematic if they represent underlying beliefs that

the event (a decline in output) is extremely unlikely. If we exclude zero probabilities from

the definition of rounding, the variation across individuals unambiguously shows rounding is

associated with worse forecasts (rounding and QPS are positively related), and removes the

anomalous negative relationship between (histogram) uncertainty and rounding. Histogram

uncertainty and rounding are not correlated across individuals when zero forecasts are not

assumed to have been rounded.

For rounding to 5, rounding is still negatively related to accuracy at both horizons (when

rounding excludes zero). We now find that perceived uncertainty is associated with more

rounding for the current quarter decline probabilities. Apart from this last finding, the results

for rounding to 5 and 10 are the same. In the analysis of individual regressions in the next

section we only consider rounding to 10. This is because some respondents always round to

5, making it impossible to analyze rounding behaviour for such individuals at the individual

level. Assuming rounding to 10 gives a better balance between rounding and non-rounding

than rounding to 5. As shown in table 5, there are few instances of coarser rounding, such as

rounding to 25, supporting a focus on rounding to 10.

4.2 Individual Regressions

For the respondents who made a reasonable number of returns we estimate individual regres-

sions. The evidence in section 4.1 based on inter-forecaster variation suggested rounding is

not related to uncertainty, but does worsen forecast accuracy. This evidence does not require a

linear relationship between uncertainty and rounding. We simply consider whether respondents

who round more also have higher (or lower) perceptions of uncertainty than average. Or tend

to produce forecasts of higher (or lower) than average accuracy. But we have not exploited the
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variation in an individual’s behaviour over time. For respondents with many forecasts over the

period, this variation may be informative. In this section we consider the time variation via

individual regressions.

4.2.1 Rounding and Perceived Uncertainty

For each respondent who made at least 40 probability of decline forecasts, we estimated a logit

regression for the dummy variable of rounding to 10, with the estimated histogram standard

deviation as an explanatory variable. We considered the current-quarter probabilities of decline,

and defined uncertainty as the histogram standard deviation of the current-year histogram fore-

casts, and the four-quarter probability of decline forecasts, using the next-year output growth

histograms. We do not report the results, because the uncertainty variable was only statisti-

cally significant in a handful of cases, consistent with type 1 error. These findings are consistent

with the results based on inter-forecaster variation in table 6, when zero is not treated as a

rounded forecast. The individual regression results did not depend on the treatment of the zero

probability forecasts.

4.2.2 Rounding and Forecast Accuracy

We regressed the normalized QPS score on a dummy for rounding. Table 7 summarizes the

results of the individual regressions for the current-quarter and h = 4 quarter ahead probability

of decline forecasts, when we do not consider zero forecasts as rounded forecasts. In the Supple-

mentary Materials Appendix we give the individual results which are summarized in table 7, as

well as the findings when the rounding dummy takes the value of 1 for a probability of decline

forecast of zero: zero forecasts are considered to have been rounded. If we do not consider zero

forecasts as rounded forecasts, the rounding dummy is statistically significant for over 60% of

the individual respondents (22 of the 36, at the 5% level), for the current-quarter forecasts,

and in every such instance is positive, signifying that rounding is associated with less accu-

racy. If we include zeros as rounded values, the relationship between accuracy and rounding is

weakened - the number of regressions in which the dummy variable is statistically significant

more than halves. This is consistent with the forecasts of zero reflecting beliefs that the event

is extremely unlikely (as opposed to rounding), and this turning out to be accurate. Hence

the evidence based on the individual regressions in tables 7 and the table in the Appendix for

the current-quarter forecasts is in line with table 6. Forecasts of zero typically reflect correct

beliefs that a decline is unlikely, and excluding zero forecasts from the set of rounded forecasts

strengthens the finding that rounding has a significant, deleterious effect on forecast accuracy

for the majority of the respondents.

For the h = 4 quarter ahead forecasts the relationship between rounding and accuracy

is weaker, and only statistically significant for 10 of the 36 respondents (at the 5% level).

15



Rounding is less costly, as might be expected, given that respondents ‘true’forecasts of decline

four-quarters ahead are likely much less precise than the current-quarter forecasts (i.e., greater

ambiguity).

We stress that the dependent variable at time t is the QPS value for individual i at time

t divided by the cross-sectional mean of QPS at time t. Hence the coeffi cient of the rounding

dummy records the increase/decrease in i’s relative score from rounding.

4.3 Modelling Probability of Decline Forecasts Using Output Growth Fore-
casts

Some evidence can be brought to bear on whether forecasters round to simplify communication,

by considering together the probability of decline and output growth forecasts typically reported

by each forecaster. This allows us to approximate an unrounded probability of decline forecast

whenever a pair of these forecasts is reported. We suppose that each individual’s quarterly

growth rate forecast with is the mean of a gaussian density forecast, N
(
with, σ

2
w,ith

)
, then:

pith = Pr (Wt+h < 0|Iit) = Φ

(
−with
σw,ith

)
, (3)

where Iit denotes individual i’s information set at time t, which determines
{
with, σ

2
w,ith

}
. For

the 4th-quarter of the year surveys the histogram forecasts can be used to estimate σw,ith, as

explained in Clements (2009). For the other quarters of the year this is not possible because of

the fixed-event nature of the U.S. SPF histograms. There are ways of calculating approximate

fixed-horizon density forecasts (and thus variance estimates), as suggested by Ganics, Rossi

and Sekhposyan (2020). A simpler approach may be to estimate the relationship between p

and w non-parametrically, using the Nadaraya-Watson regression to estimate the conditional

expectation of p given w, g (w) = E (p|W = w). For individual j at survey time t =1991:3, the

non-parametric estimator of g (w) is:

p̂j,t=1991:3,h = ĝ (wj,1991:3,h) =

∑
i

∑
t=1981:3 to 1991:2 k

(
with−wj,1991:3,h

b

)
pith∑

i

∑
t=1981:3 to 1991:2 k

(
with−wj,1991:3,h

b

) (4)

where k () is the kernel function and b the bandwidth.23 We then extend the model estimation

period so that the summation includes 1991:3, and estimate the conditional expectations at

23We use Siverman’s reference bandwith (or ‘rule of thumb’), given by 0.9An−0.2, where A is the smaller of
the sample standard deviation, and the interquartile range divided by 1.34, and n is the number of observations:
(Silverman (1986)). The reported results are based on a triangular kernel, although the results are not sensitive
to use of a Gaussian kernel. See the note to table 7
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wj,1991:4,h, for each j, 24 and so on. The limits of the summations in (4) indicate that the

history of all respondents’(and not just j’s) forecasts enter the calculation. This is because of

the relatively small number of forecasts for any one respondent. We also assume that past data

is as relevant as more recent data: this could be relaxed by estimating the model on a rolling

window of data (as opposed to the recursive forecasting scheme we have adopted).

When the reported forecasts p are rounded, they measure the ‘true’forecasts, say, p0, with

error, pith = p0ith + rith, say. Equation (4) can be viewed as a model of the relationship between

the true unrounded forecasts p0 and w if we substitute pith = p0ith + rith into (4) and assume

that the term: ∑
i

∑
t=1981:3 to 1991:2 k

(
with−wj,1991:3,h

b

)
rith∑

i

∑
t=1981:3 to 1991:2 k

(
with−wj,1991:3,h

b

)
is negligible and can be ignored. Whereas ignoring rounding (taking the reported value at face

value) may give misleading results when the object of the analysis is to learn about the size

and significance of an explanatory variable in a structural model, our aim is more modest, to

obtain a simple forecasting model for p0.

The last two columns of table 7 summarize the findings across individuals regarding the

ratio of the QPS for p̂ to that for p. The results pertain to the subset of forecasts t between

1991:3 and 2019:4 for which both p̂it and pit exist for respondent i.25 p̂ is more accurate on

QPS than p more often than not: the current-quarter predicted probabilities are more accurate

for 27 of the 36 respondents, and over 10% more accurate for nearly half of the respondents (16

of the 36).26

These findings are consistent with the proposition that probability of decline forecasts are

rounded to simplify communication. This is because more accurate non-rounded forecasts were

readily available, based only on the individual’s quarterly output growth forecasts, and a simple

model linking the two (which can be estimated from the history of w and p forecasts through

t− 1). That is, using only information available to the forecaster at the time the forecast was

made, superior (non-rounded) forecasts could have been made.

However it may be wrong to attribute the difference in accuracy between p̂ and p solely to

the effect of rounding. It may be that respondents who are less good forecasters tend to round

more. Suppose that p̂ = g (W = w) exploits useful information neglected by the respondent in

24Hence the approach is real time in the sense that at each t, the forecast p̂jth uses forecasts of w and p through
t− 1, which will be known to each respondent, and the respondent j’s time t forecast wjth. If p̂jth is superior to
pjth in terms of forecast accuracy, then the reported forecasts are ineffi cient in the sense that they do not exploit
all readily available information: see Mincer and Zarnowitz (1969).
25The first survey is 1991:3 because the 1981:3 to 1991:2 period is used to estimate the relationship beween the

forecast of quarterly output growth wit and the forecast probability of decline pit. Note that pith will typically
be missing for some periods, and p̂ith will be missing whenever with is missing.
26We consider QPS as the simplest way of scoring the forecast probabilities: Lahiri and Wang (2013) consider

other approaches.
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producing p, such that p̂ would be more accurate than the reported p even if the latter were

not rounded. To address this issue, we use a simulation to estimate the effects of rounding

on the accuracy of the forecast probabilities of decline. In the simulation, we can compare

the true probabilities (denoted by p0) to the rounded probabilities, p, assuming a particular

rounding scheme, in terms of QPS: i.e., we can compare E
(
p0 − 1w<0

)2 and E (p− 1w<0)
2. The

difference between the simulation estimates of these two losses estimates the effect of rounding.

Because we only observe the reported forecast probabilities, the empirical counterpart of this

loss is not available. In the simulation we also estimate the difference between E (p− 1w<0)
2

and E (p̂− 1w<0)
2, where p̂ is the estimator of E(p|W = w). Empirical estimates of the ratio

of these two losses are reported in table 7.

Details of the data generating process are provided in the section 7 Appendix. In brief,

forecaster behaviour is given by the noisy information model,27 and is loosely calibrated on

SPF forecasts of quarterly real GDP. Probability of decline forecasts are obtained assuming

gaussianity and assuming each respondent forecasts the variance of future output growth. We

allow the forecast error variance to differ across respondents by assuming different signal preci-

sions.28 The model assumes forecasters are rational given the informational rigidities they face.

Our simulation findings were qualitatively unaffected if instead of assuming noisy information,

we allow that past values of real output growth are observed (termed private information), or if

we suppose that respondents are no longer rational but are subject to a behavioural bias, such

as in the diagnostic expectations of Bordalo et al. (2020).

We investigate the consequences of three rounding behaviours. In the first, R1, agents

round to a given multiple with a prescribed probability. We assume rounding to a multiple

of 0.1 with a probability of 0.4. The second R2 supposes the probability of rounding depends

on the agent’s true probability, p0, the simplest case of which is to assume the probability of

rounding equals p0. Recessionary times are typically associated with higher uncertainty, so

that when the probability of a decline is higher the agent is more likely to round her forecast

to reflect the higher uncertainty. Thirdly, R3, when we assume heterogeneous agents, the

probability of rounding is higher for agents with higher forecast-error variances (that is, with

less precise signals). Specifically, we assume the probability of rounding is 0.4 times the ratio

of the agent’s forecast-variance to the median error-variance across agents. Hence the median

forecaster acts as under our first assumption, whereas better (worse) forecasters are less (more)

likely to round.29 R3 captures the idea that agents round to convey uncertainty: in our model

27This noisy information model has become one of the leading models of forecast behaviour, see e.g., Coib08
28See, e.g., D’Agostino et al. (2012) and Clements (2020b, 2020a) for evidence on whether some forecasters

really are better than others. In terms of the noisy information model, better forecasters are the recipients
of more precise signals. Bordalo, Gennaioli, Ma and Shleifer (2020) suggest that instead of interpreting the
noisy signal an agent receives as reflecting ‘inattentiveness’, as is often done in this literature, it might be more
reasonable to suppose it reflects the use of "different models or pieces of evidence".
29 In our simulations the forecast-error variances differ across agents when we allow heterogeneity, but do not
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they correctly perceive the uncertainty they face.

The findings of the simulations are recorded in table 8. The column headed E
(
p0 − 1w<0

)2
reports the estimate of the QPS value for the true forecast probabilities, and the next three

columns are the ratios of the QPS values for each of the three rounded forecasts (R1, R2 and

R3), to that using p0. 30 We report the cross-sectional mean across the respondents as well

as the minimum and maximum. When agents are homogeneous the three measures are close

to each other, and only differ because of simulation error. The effects of rounding on event-

forecast accuracy are barely perceptible, and any dependence on the precision of the signal is

again barely perceptible. Because the empirical estimates are often of an order of magnitude

larger than the estimates in the simulation, we conclude that the difference in accuracy between

p̂ and p for the most part does not reflect rounding, but forecast ineffi ciency.

Whereas rounding has only a small effect on forecasting the event that output will be

lower, the simulation shows that it naturally has a much larger effect when we compare the

accuracy of p̂ and p as forecasts of p0. The last three columns show the expected squared

error of the corrected probability p̂ (for a given rounding scheme, Rj) as a forecast of p0 as

a ratio of the expected squared error of p (for a given rounding scheme, Rj) as a forecast of

p0. The corrected forecasts are obtained from (4) by replacing pith with the forecasts obtained

by applying one of the three rounding schemes. The last three columns show that on average

across respondents the corrected forecasts can be much more accurate than that of the rounded

forecasts for the true probabilities when the respondents are homogeneous (rows with ‘Hetero.

= 0’). Under heterogeneity, and when the private signals are relatively more important (σε = 1,

as opposed to 3), the performance of the non-parametric estimate of the respondent’s unrounded

probability p0 depends on the precision of the private-information signal. For example, under

noisy information the range for ‘random’rounding R1 is 0.131 to 4.058. The maximum value of

4.058 is found for the forecaster who receives the most precise signal. This respondent’s rounded

forecasts are more accurate than the non-parametric estimates, because of the importance of

the time-t signal, which is foregone when (4) is used. As the signal precision deteriorates, the

omission of the signal in estimating the non-rounded value matters less, and the ratio falls. The

same is observed for the other rounding schemes.

The results for the three different expectations structures (noisy and private information,

and diagnostic expectations) are qualitatively in line with one another.

To recap: we cannot directly determine the effect of rounding on event-forecasting accuracy

because we only observe the reported value, which has been rounded to an unknown extent.

However, our simulation shows that empirically-plausible rounding behaviours only worsen

depend on time.
30We report the averages of the 100 respondents, where for each respondent we calculate QPS over 10,000

replications. When the forecasters are homogeneous, this is equivalent to 1,000,000 replications of one respondent,
but the distinction is meaningful when we permit heterogeneity.
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accuracy by less than half a percentage point. Hence the improvements in empirical forecast

accuracy of the order of 10% from the non-parametric estimates p̂ likely reflect the failure of

the forecasters to fully utilize all available information, rather than the effects of rounding

per se. That is, differences in event forecast accuracy across forecasters reflects differences in

forecasting ability.

5 Model of the Cross-sectional Distribution of Probability of
Decline Responses

Binder (2017) supposes reported survey responses Rit are generated by a combination of lower-

uncertainty l-agents, who round less, and higher-uncertainty h-agents, who round more. (Note

h now indicates ‘high’, not the forecast horizon). She uses the proportion of the two types

at each time t as the basis of a time-series uncertainty index. We adapt her analysis of CPI

inflation rates for the probabilities of decline.

We suppose type-h respondents choose from a set of rounded responses, Sh, and type l

from a set Sl, where Sh ⊂ Sl, indicating Sh is coarser than Sl. The distribution of survey

responses at t is a mix of the probability mass function (pmf) φlt for type l-agents, with support

on Sl, and φht , with support on Sh. For the probability forecasts, Sl = {. . . , 0, 1, 2, 3, . . .} and
Sh = {0, 5, 10, 15, . . .}, where most but not all reported forecasts are integer-valued. If Rit is not
an element of Sh, then i is not type h, but if Rit ∈ Sh, i could be either type. We assume the pdf
of i is either pl (x) if i ∈ l or ph (x) if i ∈ h, where pl (x) ∼ LG (µl,σl), and ph (x) ∼ LG (µh,σh),

where we expect to find σh > σl if uncertainty explains rounding. That is, the agents who

round are those who perceive more uncertainty. LG denotes the logistic pdf density function,

and replaces the normal density used by Binder. Hence:

φlt = P (Rit = j|i ∈ l) =

∫ f lmax(j)

f lmin(j)
pl (x) dx, j ∈ Sl

φht = P (Rit = j|i ∈ h) =

∫ fhmax(j)

fhmin(j)
ph (x) dx, j ∈ Sh

where f lmin(j) and f
l
max(j) are the min and max values of the underlying forecast distribution

that are rounded to the reported value j if the forecaster is type l, and similarly for fhmin(j)

and fhmax(j) for type h. If we consider rounding to ‘5’, for example, then for j = 45, say,[
fhmin(j = 45), fhmax(j = 45)

]
= [42.5, 47.5], and

[
f lmin(j = 45), f lmax(j = 45)

]
= [44.5, 45.5]. For

j which is not a multiple of 5, say, j = 46,
[
f lmin(j = 46), f lmax(j = 46)

]
= [45.5, 46.5], but

φht (j = 46) = 0.

In period t the survey responses come from φt = λtφ
h
t + (1− λt)φlt, and maximizing the
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log-likelihood
∑

j∈Sl Ntj log φt (j) provides estimates of
{
λt, µt,h, σt,h, µt,l, σt,l

}
, where Ntj is

the number of responses Rit = j, j ∈ Sl, at time t. The number of SPF responses at each t are
far fewer than those available to Binder, and so we aggregate the responses over t, and suppose

φht = φh, φlt = φl and λt = λ, for all t, as well as Nj =
∑

tNtj . This means it is not possible to

consider time-series variation - for example, how the proportion of rounders evolves over time.

But within this approach we can ask whether rounders perceive more uncertainty than the

non-rounders, and formally test (via a standard likelihood ratio test) the null hypothesis that

σh = σl. Figure 6 plots the estimated densities values φ̂
l

t and φ̂
h

t , and records the estimates of

the location and scale parameters of the logistic distributions. We find that σ̂l < σ̂h, and reject

the null of equality of the σ’s at any significance level. We find λ̂ = 0.59, indicating that over

a half of the respondents are of the high-uncertainty types who tend to round their forecasts.

While our findings are consistent with those of Binder for consumers, because there are too

few observations to estimate λ and the parameters of the two distributions for each t, we are

unable to correlate a series of λ estimates with proxies of forecast uncertainty, and are not able

to show whether or not rounding depends on uncertainty.

6 Conclusions

There is some evidence that U.S. Professional Forecasters round their point forecasts of CPI

inflation and the unemployment rate, but perhaps not surprisingly to a lesser extent than Binder

(2017) found for consumers’ inflation forecasts. We found little evidence that forecasts were

rounded to a greater extent in response to higher perceived uncertainty about future outcomes,

at odds with the findings for consumer inflation forecasts. Hence our findings suggest that the

degree of rounding of point predictions by professional forecasters could not serve as a proxy

for perceived uncertainty, contrary to the findings of Binder (2017). However, there is some

evidence that respondents who are more prone to round their forecasts produce less accurate

forecasts.

By way of contrast, the event-probability forecasts (the forecast probabilities of a decline

in output) are clearly rounded. Around 85% of the probabilities that output will decline in

the current quarter are reported as multiples of 5, and over a half are multiples of 10. If we

consider inter-forecaster variation, or individual regressions of accuracy on rounding, we find

that rounding is correlated with worse event-forecast accuracy. However, our findings might

reflect the fact that worse (less accurate) forecasters round more, rather than the degree of

rounding per se worsening accuracy.

A respondent’s probability of decline and output growth forecasts of the same quarter

ought to be closely related, and we exploit this to generate series of non-rounded probability

forecasts for all the respondents. These are found to be up to 10% more accurate on QPS

than the reported probabilities for over a half of respondents. If respondents’behaviour can be
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approximated by our model (and they make use of the information on output growth forecasts),

then subsequent rounding of these ‘effi cient’forecasts accounts for the reduction in accuracy.

But respondents’forecasts may not be effi cient, and less good forecasters may round more.

We overcome this impasse by simulating the loss from rounding for a set of effi cient fore-

casters, under a number of assumed rounding schemes. The size of the simulated losses from

rounding are not commensurate with the empirical estimates. Rounding of itself has a relatively

minor impact on event-forecast accuracy, and the assumption that respondents round otherwise

effi cient forecasts is untenable.

We conclude that rounding of probability forecasts appears to matter little for event-

forecasting. It would matter if the rounded forecasts were compared to the true probabilities,

but the latter are of course only available in simulation studies.

We have not considered rounding probabilities in the form of survey histogram forecasts,

and leave this issue for future research.
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Table 1: Rounding of CPI and UR annual point forecasts

no. forecasts. (#) M5/# M1/#
CPI current year (Q4 on Q4) 4709 0.170 0.733
CPI next year (Q4 on Q4) 4432 0.193 0.783
UR current year 4885 0.175 0.765
UR next year 4757 0.176 0.785

M5 denotes the forecast is a multiple of 0.5, and M1 a multiple of 0.1 (that is, reported to one
decimal place). The last two columns are the proportions of forecasts which are M5 and M1
respectively.
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Table 2: Aggregate time-series rounding results for CPI

Constant Q2 Q3 Q4 Time Tr. Macro Unc. R2

Current year (Q4 on Q4)

Dep. var.: Proportion of forecasts rounded to M5 at each t
1981:3 to 2019:4 0.348 0.000 0.013 0.005 -0.002 -0.064 0.409

0.000 0.999 0.512 0.833 0.000 0.225 .
1981:3 to 1990:3 0.315 0.067 0.060 -0.033 -0.002 -0.049 0.117

0.012 0.239 0.381 0.691 0.204 0.680 .
1990:4 to 2019:4 0.398 -0.021 -0.004 0.011 -0.002 -0.112 0.460

0.000 0.213 0.844 0.648 0.000 0.096 .
1990:4 to 2005:4 0.451 -0.027 -0.018 0.019 -0.003 -0.141 0.244

0.000 0.366 0.565 0.669 0.001 0.085 .
2006:1 to 2019:4 0.303 -0.014 0.017 0.012 -0.002 0.014 0.333

0.003 0.447 0.295 0.535 0.005 0.915 .
Dep. var.: Proportion relative to those reported to 1 decimal place

1981:3 to 2019:4 0.269 0.006 0.029 0.038 -0.001 0.002 0.108
0.000 0.782 0.243 0.175 0.008 0.971 .

1981:3 to 1990:3 0.315 0.073 0.066 -0.037 -0.002 -0.060 0.126
0.012 0.199 0.344 0.657 0.306 0.603 .

1990:4 to 2019:4 0.289 -0.016 0.008 0.047 -0.001 -0.034 0.121
0.000 0.462 0.753 0.125 0.021 0.652 .

1990:4 to 2005:4 0.426 -0.027 -0.021 0.023 -0.002 -0.123 0.185
0.000 0.405 0.528 0.622 0.008 0.137 .

2006:1 to 2019:4 0.191 -0.007 0.042 0.083 0.000 0.170 0.138
0.290 0.834 0.254 0.052 0.728 0.423 .

Next year (Q4 on Q4)

Dep. var.: Proportion of forecasts rounded to M5 at each t
1981:3 to 2019:4 0.300 -0.027 -0.019 -0.055 -0.001 0.044 0.336
. 0.000 0.221 0.410 0.013 0.000 0.246 .
1981:3 to 1990:3 0.129 -0.024 -0.008 -0.028 0.001 0.150 0.134
. 0.265 0.689 0.899 0.646 0.553 0.049 .
1990:4 to 2019:4 0.365 -0.033 -0.027 -0.063 -0.001 -0.030 0.294
. 0.000 0.157 0.293 0.008 0.000 0.633 .
1990:4 to 2005:4 0.367 -0.061 -0.054 -0.080 -0.001 -0.041 0.124
. 0.000 0.100 0.210 0.037 0.126 0.605 .
2006:1 to 2019:4 0.215 -0.002 0.003 -0.042 -0.001 0.067 0.167
. 0.082 0.933 0.904 0.146 0.352 0.511 .

Dep. var.: Proportion relative to those reported to 1 decimal place
1981:3 to 2019:4 0.203 -0.019 -0.015 -0.036 0.000 0.103 0.091
. 0.000 0.463 0.568 0.194 0.672 0.014 .
1981:3 to 1990:3 0.087 -0.008 -0.005 -0.024 0.002 0.170 0.142
. 0.526 0.901 0.931 0.702 0.398 0.049 .
1990:4 to 2019:4 0.258 -0.028 -0.023 -0.042 0.000 0.016 0.024
. 0.000 0.335 0.436 0.177 0.939 0.814 .
1990:4 to 2005:4 0.337 -0.061 -0.050 -0.077 -0.001 -0.031 0.089
. 0.001 0.119 0.263 0.057 0.468 0.699 .
2006:1 to 2019:4 -0.162 0.008 0.013 0.009 0.002 0.332 0.048

0.510 0.849 0.732 0.860 0.142 0.084 .

For each sample period, the first row gives the parameter estimates, and the second row the p-value of
the null that the coeffi cient equals zero, using heteroscedasticity-consistent standard errors.
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Table 3: Aggregate time-series rounding results for UR

Constant Q2 Q3 Q4 Time Tr. Macro Unc. R2

Current year

Dep. var.: Proportion of forecasts rounded to M5 at each t
1981:3 to 2019:4 0.420 -0.021 -0.038 -0.043 -0.002 -0.203 0.112
. 0.000 0.384 0.287 0.456 0.000 0.005 .
1981:3 to 1990:3 0.063 0.014 0.069 0.209 0.001 0.098 0.093
. 0.768 0.815 0.512 0.293 0.739 0.598 .
1990:4 to 2019:4 0.476 -0.014 -0.026 -0.063 -0.002 -0.220 0.155
. 0.000 0.652 0.583 0.359 0.000 0.047 .
1990:4 to 2005:4 0.376 0.003 -0.017 -0.030 0.000 -0.286 0.046
. 0.017 0.943 0.805 0.776 0.853 0.039 .
2006:1 to 2019:4 0.108 -0.001 0.022 -0.012 0.000 0.098 0.052
. 0.276 0.978 0.713 0.884 0.555 0.526 .

Dep. var.: Proportion relative to those reported to 1 decimal place
1981:3 to 2019:4 0.377 -0.017 -0.032 -0.039 -0.001 -0.172 0.030
. 0.000 0.582 0.456 0.567 0.042 0.031 .
1981:3 to 1990:3 0.062 0.014 0.074 0.209 0.001 0.098 0.092
. 0.771 0.816 0.488 0.293 0.727 0.600 .
1990:4 to 2019:4 0.424 -0.011 -0.027 -0.067 -0.001 -0.196 0.042
. 0.000 0.786 0.639 0.411 0.042 0.115 .
1990:4 to 2005:4 0.297 0.013 0.000 -0.003 0.001 -0.261 0.052
. 0.085 0.791 0.995 0.978 0.685 0.074 .
2006:1 to 2019:4 0.143 0.003 0.015 -0.028 0.000 0.171 0.044

0.452 0.973 0.896 0.858 0.879 0.574 .

Next year

Dep. var.: Proportion of forecasts rounded to M5 at each t
1981:3 to 2019:4 0.290 -0.024 -0.026 -0.042 -0.001 0.000 0.305
. 0.000 0.146 0.163 0.011 0.000 0.983 .
1981:3 to 1990:3 0.237 -0.055 -0.040 -0.073 -0.001 0.050 0.179
. 0.015 0.131 0.380 0.077 0.768 0.256 .
1990:4 to 2019:4 0.319 -0.019 -0.027 -0.034 -0.001 -0.037 0.255
. 0.000 0.300 0.206 0.059 0.000 0.132 .
1990:4 to 2005:4 0.235 -0.033 -0.051 -0.045 0.000 -0.022 0.076
. 0.000 0.204 0.083 0.077 0.557 0.437 .
2006:1 to 2019:4 0.147 -0.004 -0.001 -0.021 0.000 -0.009 0.025
. 0.069 0.858 0.982 0.349 0.826 0.893 .

Dep. var.: Proportion relative to those reported to 1 decimal place
1981:3 to 2019:4 0.221 -0.024 -0.022 -0.030 0.000 0.031 0.045
. 0.000 0.198 0.323 0.129 0.851 0.146 .
1981:3 to 1990:3 0.237 -0.055 -0.040 -0.073 -0.001 0.050 0.178
. 0.014 0.131 0.380 0.078 0.760 0.258 .
1990:4 to 2019:4 0.245 -0.020 -0.026 -0.026 0.000 -0.022 0.016
. 0.000 0.341 0.319 0.250 0.843 0.444 .
1990:4 to 2005:4 0.198 -0.036 -0.052 -0.040 0.001 -0.022 0.132
. 0.001 0.167 0.070 0.117 0.066 0.447 .
2006:1 to 2019:4 0.136 -0.005 0.006 -0.002 0.000 0.048 0.013

0.277 0.882 0.902 0.951 0.647 0.665 .

For each sample period, the first row gives the parameter estimates, and the second row the p-value of
the null that the coeffi cient equals zero, using heteroscedasticity-consistent standard errors.
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Table 4: Analysis of Rounding of CPI and UR Forecasts: Rank Correlation Tests across Indi-
viduals

CPI current CPI next year UR current UR next year

A. Rounding and Accuracy
0.068 0.120 0.043 0.160
0.768 0.905 0.677 0.959

B. Uncertainty and Rounding
-0.064 0.098 -0.032 0.032
0.246 0.856 0.363 0.633

C. Accuracy and Uncertainty
0.126 0.019 0.004 0.043
0.915 0.580 0.517 0.681

D. Uncertainty/Accuracy and Uncertainty
-0.063 0.056 0.009 -0.014
0.249 0.729 0.538 0.441

Accuracy is measured by MSFE, and uncertainty by the variance of the respondents’current or
next year output growth or inflation histograms. Both accuracy and uncertainty are normalized
by the cross-sectional averages. Rounding is calculated as the proportion of the respondents’
forecasts which are an exact multiple of 0.5.
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Table 5: Reported probabilities of decline, phj,t, surveys 1981:3 to 2019:4

Forecast Current 1- 2- 3- 4-
quarter quarter quarter quarter quarter

0 0.212 0.096 0.058 0.054 0.057
5 0.168 0.153 0.130 0.111 0.118
10 0.144 0.190 0.202 0.199 0.179
15 0.054 0.091 0.127 0.128 0.112
20 0.061 0.100 0.136 0.153 0.156
25 0.033 0.054 0.063 0.085 0.095
30 0.030 0.046 0.062 0.066 0.069
35 0.013 0.015 0.018 0.024 0.026
40 0.027 0.029 0.028 0.024 0.030
45 0.009 0.008 0.005 0.006 0.007
50 0.023 0.030 0.021 0.017 0.022
55 0.002 0.003 0.004 0.003 0.001
60 0.009 0.010 0.008 0.004 0.004
65 0.003 0.004 0.001 0.000 0.000
70 0.007 0.006 0.002 0.001 0.001
75 0.008 0.008 0.003 0.001 0.001
80 0.010 0.006 0.002 0.001 0.001
85 0.003 0.002 0.000 0.000 0.000
90 0.013 0.004 0.000 0.001 0.000
95 0.006 0.001 0.000 0.000 0.000
100 0.019 0.004 0.000 0.000 0.000
Proportion reported as a multiple of :
10 or 5 0.852 0.862 0.870 0.878 0.884
10 0.555 0.522 0.520 0.519 0.522
10 or 5 (excl. 0) 0.640 0.766 0.813 0.824 0.827
No. Forecasts 4990 5067 5078 5075 5045

Notes. The table reports the proportion of probability of decline forecasts (phj,t) reported as the value
given in the first column, for h = 0, 1, . . . , 4.
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Table 6: Probability of Decline Forecasts: Rank Correlation Tests across Individuals

Rounding to 10 and Accuracy
Rounding includes zero Rounding excludes zero
h = 0 h = 4 h = 0 h = 4
-0.065 0.154 0.596 0.361
0.241 0.953 1.000 1.000

Rounding to 10 and Uncertainty
Rounding includes zero Rounding excludes zero
h = 0 h = 4 h = 0 h = 4
-0.248 -0.127 0.083 -0.020
0.003 0.084 0.816 0.414

Rounding to 5 and Accuracy
Rounding includes zero Rounding excludes zero
h = 0 h = 4 h = 0 h = 4
0.138 0.116 0.561 0.317
0.934 0.896 1.000 1.000

Rounding to 5 and Uncertainty
Rounding includes zero Rounding excludes zero
h = 0 h = 4 h = 0 h = 4
-0.073 -0.058 0.187 0.118
0.215 0.266 0.980 0.899

Accuracy is measured by normalized QPS. Uncertainty is measured by the variance of the respondents’
current year output growth histograms, normalized by the cross-sectional average.

Table 7: Summary of individual OLS regressions of normalised QPS score on a dummy for
rounding of current-quarter and four-quarter ahead probability of decline forecasts, assuming
zero-forecasts are not rounded.

Current-quarter Four-quarter Current QPS h = 4 QPS
Dummy p-value Dummy p-value p̂/p p̂/p
1 2 3 4 5 6

0.944 22 0.275 10 27 20
0.904 27 0.487 16 16 14

Rounding is defined as a multiple of 10, but excluding forecasts of zero.
For columns 1 and 3, the table reports the cross-sectional mean and standard deviation of the individual
coeffi cient estimates, for columns 2 and 4 the number of p-values less than 0.05 and 0.10. For columns
5 and 6 we calculate the ratio of the QPS score for p̂ to the QPS score for p for each individual. The
table entries are the number of times the ratio was less than 1 (favouring p̂, first row) and the number
of times it was less than 0.9 (second row).
The results in the columns 5 and 6 are based on a triangular kernel and Silverman’s ‘rule of thumb’(see
footnote in main text). If instead a Gaussian kernel is used the entries in column 5 change to 31 and 15,
and those in column 6 are unchanged.
The table summarises the results of the separate regressions for the 36 respondents who made 40 or
more forecasts.
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Table 8: Simulation results. The effects of rounding on event forecasting, on comparisons of
true and rounded forecasts, and correcting rounded forecasts

Forecasting Falls Forecasting p0 with p̂
Hetero. σεi E

(
p0 − 1w<0

)2
R1 R2 R3 R1 R2 R3

Noisy Information
0 1 0.114 1.003 1.001 1.003 0.156 0.084 0.156
0 1 0.111 1.000 1.000 1.000 0.148 0.072 0.148
0 1 0.118 1.005 1.004 1.005 0.167 0.094 0.167
1 1 0.140 1.002 1.001 1.002 0.701 1.223 0.859
1 1 0.114 1.000 0.999 1.000 0.131 0.118 0.135
1 1 0.151 1.005 1.003 1.005 4.058 7.174 6.189
0 3 0.152 1.002 1.001 1.002 0.274 0.155 0.274
0 3 0.150 1.000 0.999 1.000 0.263 0.145 0.263
0 3 0.154 1.004 1.003 1.004 0.288 0.169 0.288
1 3 0.157 1.002 1.001 1.002 0.331 0.210 0.329
1 3 0.151 0.999 0.999 0.999 0.304 0.160 0.300
1 3 0.159 1.005 1.003 1.005 0.475 0.507 0.502

Private Information
0 1 0.112 1.003 1.001 1.003 0.151 0.083 0.151
0 1 0.109 1.000 0.999 1.000 0.142 0.072 0.142
0 1 0.115 1.005 1.004 1.005 0.158 0.091 0.158
1 1 0.134 1.002 1.001 1.002 0.536 0.882 0.633
1 1 0.112 1.000 0.999 1.000 0.126 0.094 0.132
1 1 0.144 1.006 1.004 1.006 3.110 5.420 4.454
0 3 0.143 1.003 1.001 1.003 0.239 0.133 0.239
0 3 0.142 1.000 0.999 1.000 0.228 0.124 0.228
0 3 0.145 1.005 1.003 1.005 0.250 0.146 0.250
1 3 0.147 1.003 1.001 1.002 0.261 0.165 0.259
1 3 0.144 1.001 0.999 1.001 0.240 0.135 0.237
1 3 0.149 1.004 1.003 1.004 0.350 0.339 0.365

Diagnostic Expectations
0 1 0.147 1.003 1.004 1.003 0.079 0.118 0.079
0 1 0.142 1.001 1.001 1.001 0.074 0.109 0.074
0 1 0.153 1.005 1.007 1.005 0.084 0.129 0.084
1 1 0.208 1.003 1.004 1.003 0.576 0.626 0.710
1 1 0.147 1.000 1.000 1.000 0.049 0.073 0.051
1 1 0.260 1.005 1.006 1.005 3.849 4.187 5.852
0 3 0.259 1.003 1.005 1.003 0.072 0.124 0.072
0 3 0.249 1.002 1.003 1.002 0.068 0.109 0.068
0 3 0.268 1.005 1.007 1.005 0.079 0.137 0.079
1 3 0.342 1.003 1.005 1.003 0.083 0.125 0.084
1 3 0.258 1.001 1.003 1.001 0.047 0.092 0.046
1 3 0.395 1.005 1.007 1.004 0.276 0.300 0.293

In each set of 3 rows, the first is the mean across respondents, and the second and third rows are the
minimum and maximum across respondents.
A 0 in the first column indicates agents are homogeneous, and a 1 indicates heterogeneity.
R1, denotes rounding to a multiple of 0.1 with probability 0.4. R2 makes the probability of rounding (to
a multiple of 0.1) equal to p0. R3 sets the probability of rounding (to a multiple of 0.1) to (0.4 times)
the ratio of the agent’s forecast-error variance to the median.
The results for ‘Forecasting Falls’ are for the QPS scores for forecasting the event with a rounded
probability, to the forecast using the true probability. The last three columns are the expected squared
errors of the corrected forecasts to the rounded forecasts.30
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Figure 1: Proportion of each respondent’s CPI forecasts (current-year) which are a multiple of
0.5
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Figure 2: Proportion of each respondent’s CPI forecasts (next-year) which are a multiple of 0.5
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Figure 3: Proportion of each respondent’s UR forecasts (current-year) which are a multiple of
0.5
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Figure 4: Proportion of each respondent’s UR forecasts (next-year) which are a multiple of 0.5
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Figure 5: Proportion of each respondent’s current-quarter probabilities of decline which are
rounded to 10, excluding zeros
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Figure 6: φl (left) and φh (right) densities in the model of the cross-sectional distribution of the
current-quarter reported probabilities of decline (zeros assumed to not denote rounding). The
estimated location and scale parameters are µl, σl, µh, σh = −0.0181, 0.0784, 0.2001, 0.1237.
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7 Appendix to section 4.3

The data generation process for quarterly output growth in the simulations is an AR (1):

yt = β0 + βyt−1 + ηt

where ηt is an iid gaussian innovation, ηt ∼ N
(
0, σ2η

)
. Individual forecasters each receive a

signal sit:

sit = yt + εit,

where εit ∼ N
(
0, σ2εi

)
, and σ2εi = σ2ε ∀i signifies all agents receive the same quality signal, and

are homogeneous.

In the base case of noisy information NI, agent i’s information set at time t, Ii,t = {sit, sit,t−1, . . .},
the history of signals received by agent i through t. Past values of y are not observed. Under

private information PI, Ii,t is augmented with yt−1, yt−2, . . ..
Noisy Information (NI) and Diagnostic Expectations (DE)

The forecast of t that incorporates sit is given by:

fit|t = Kisit + (1−Ki) fit|t−1 (5)

= fit|t−1 +Ki

(
sit − fit|t−1

)
. (6)

This updates the forecast of t based on information through t−1, fit|t−1, optimally in a MMSE-

sense. The optimal weight is given by Ki = Σi/
(
Σi + σ2εi

)
, where:

Σi =
1

2

(
− (1− β)2 σ2εi + σ2η +

√[
(1− β)2 σ2εi − σ2η

]2
+ 4σ2εiσ

2
η

)

(see,e.g., Bordalo et al. (2020)). The 1-step forecast is calculated from (11), as fi,t+1|t =

β0 + βfit|t.

The steady-state variance of the forecast error is:

V ar
(
yt − fit|t|Ii,t

)
=

Σiσ
2
εi

Σi + σ2εi

and:

V ar (yt+1 − fit+1t|Ii,t) =
β2σ2εiΣi

σ2εi + Σi
+ σ2η.

Under Diagnostic Expectations, (6) becomes:

fit|t = fit|t−1 + (1 + θ)Ki

(
sit − fit|t−1

)
. (7)
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where θ > 0 indicates news is overweighted relative to the optimal amount given by the Kalman

gain K.

Private Information (PI)

The rational expectations forecast for agent i under PI is given by:

fit|t = λisit + (1− λi) (β0 + βyt−1) (8)

= β0 + βyt−1 + λi [sit − (β0 − βyt−1)] (9)

= β0 + βyt−1 + λiηt + λεit (10)

where λi = σ2η
(
σ2η + σ2εi

)−1. That is, it optimally combines the model forecast of t based on
information up to t − 1, β0 + βyt−1, with the time t signal sit. The 1-step forecast of t + 1 is

simply, as above:

fi,t+1|t = β0 + βfit|t (11)

and for h-steps ahead:

fi,t+h|t =
β0
(
1− βh

)
1− β + βhfit|t.

The variances of the forecast errors are:

V ar
(
yt − fit|t|Ii,t

)
=

σ2εiσ
2
η

σ2εi + σ2η
(12)

V ar
(
yt+1 − fit+!|t|Ii,t

)
=

β2σ2εiσ
2
η

σ2εi + σ2η
+ σ2η.

If we let fit and σ2it denote the forecast, and forecast-error variance for one of NI, DE and PI,

for a given horizon, then forecast probabilities of decline are given by:

pit = Φ

(
−fit
σit

)
. (13)

Calibration

The model is loosely calibrated on U.S. real quarterly GDP growth We suppose β0 = 0.50,

and β = 0.36. This reproduces the unconditional growth rate of quarterly real GDP of 0.78 for

the period 1947:1 —2018:2 (2018:3 data vintage). The AR(1) model estimated standard error

is ση = 0.88. These values are used for β0, β and ση throughout.

In the private information model, setting σε = 3 approximately reproduces the (average

over time) cross-sectional standard deviation in the current-quarter output growth forecasts

(1992 —2018) of 0.22 assuming homogeneous forecasters. Disagreement varies inversely with

σε, because higher σε means less weight is given to private signals, which are the only source
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of disagreement. However, setting σε = 3 when ση = 0.88 suggests a weight of less than one

tenth on the signal, and we also experiment with σε = 1.

Forecast heterogeneity is determined such that the standard deviations of the signals are

evenly spaced from 1 to 3, when the signals are (relatively) informative, σε = 1, and from 3 to

9 when σε = 3.

For DE, we set θ = 1
2 - all other quantities under DE, such as the forecast-error variance,

are unchanged relative to NI (see Bordalo et al. (2020)).
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