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ABSTRACT: Convection-permitting ensemble prediction systems (CP-ENS) have been implemented in the midlatitudes

for weather forecasting time scales over the past decade, enabled by the increase in computational resources. Recently,

efforts are being made to study the benefits of CP-ENS for tropical regions. This study examines CP-ENS forecasts pro-

duced by the Met Office over tropical East Africa, for 24 cases in the period April–May 2019. The CP-ENS, an ensemble

with parameterized convection (Glob-ENS), and their deterministic counterparts are evaluated against rainfall estimates

derived from satellite observations (GPM-IMERG). The CP configurations have the best representation of the diurnal

cycle, although heavy rainfall amounts are overestimated compared to observations. Pairwise comparisons between the

different configurations reveal that the CP-ENS is generally the most skillful forecast for both 3- and 24-h accumulations of

heavy rainfall (97th percentile), followed by the CP deterministic forecast. More precisely, probabilistic forecasts of heavy

rainfall, verified using a neighborhood approach, show that the CP-ENS is skillful at scales greater than 100 km, significantly

better than the Glob-ENS, although not as good as found in the midlatitudes. Skill decreases with lead time and varies

diurnally, especially for CP forecasts. TheCP-ENS is underspread both in terms of forecasting the locations of heavy rainfall

and in terms of domain-averaged rainfall. This study demonstrates potential benefits in using CP-ENS for operational

forecasting of heavy rainfall over tropical Africa and gives specific suggestions for further research and development,

including probabilistic forecast guidance.

SIGNIFICANCE STATEMENT: Forecasting the location and timing of precipitation is challenging, especially in the

tropics where most rainfall comes from convective systems. In the midlatitudes, convection-permitting ensembles (CP-

EPS) have been shown to be beneficial to operational forecasting of precipitation, but only few studies have considered

CP-EPS in the tropics. In this study of 24 forecasts over tropical East Africa, we find that CP-EPS have skill and aremore

skillful than deterministic CP forecasts and global ensembles in predicting the rainfall location and discriminating be-

tween events and nonevents. However, skill scores are lower than those found for CP-EPS in the midlatitudes. Further

work should focus on improving ensemble spread, including for the global ensemble.

KEYWORDS: Forecast verification/skill; Probabilistic Quantitative Precipitation Forecasting (PQPF); Ensembles; Model

comparison

1. Introduction

In tropical Africa, unlike midlatitude locations, the main

contribution to daily rainfall comes from deep convective

systems (Fink et al. 2017). Dezfuli et al. (2017b) found, for

instance, that convective events contribute to nearly three

quarters of the total seasonal precipitation, even if they are

rare. The dominance of convection makes rainfall forecasting

in this region particularly challenging. The global models that

are usually available to local forecasters rely on parameteri-

zation schemes to generate convection and are typically unable

to reproduce the two main characteristics of precipitation,

namely intensity and diurnal timing. Such parameterized

convection models produce light rain too frequently, typically

miss the heaviest rainfall events (e.g., Holloway et al. 2012) and

tend to predict the afternoon peak of the convective rainfall

too early (Bechtold et al. 2004). More recently, Vogel et al.

(2018) suggested the parameterization of convection as the

potential cause of the low skill by nine operation global en-

semble prediction systems with respect to climatological fore-

casts for rainfall prediction in West Africa.

Increasing model resolution to achieve a 4-km horizontal

grid spacing or less has proven to be beneficial for forecasting
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rainfall for two reasons: 1) convective clouds and their updrafts

start to be explicitly resolved and 2) local topographic features

(e.g., orography, coastlines, land surface properties) are rep-

resented in finer details, allowing better representation of their

associated feedbacks on convection (Clark et al. 2016).

In West Africa, Pearson et al. (2014), Marsham et al. (2013),

and Birch et al. (2014) showed that running limited area

convection-permitting (CP) models with grid spacing between

12 and 1.5 km improved the initiation, propagation, and diurnal

cycle of convective systems within the West African monsoon.

In 2011, to support the World Meteorological Organization

(WMO) community of meteorological services in Africa, the

Met Office began running operationally a 4.4-km CP deter-

ministic model over tropical East Africa. Chamberlain et al.

(2014) found that for a 2-month forecasting period for Lake

Victoria, this CP model had better skill than the Met Office

global model at predicting rainfall. More recently Woodhams

et al. (2018) found that over a 2-year period the CP model

outperformed theMet Office global parameterized convection

model for rainfall prediction throughout East Africa, espe-

cially on subdaily time scales and for storms over land. In

March 2019, the CP model was expanded to include the whole

of West and East Africa, now referred to as the ‘‘Tropical

Africa Model’’ (Hanley et al. 2021). Information from this

model is freely available to meteorological services covered by

the domain.

Due to lack of predictability at small spatiotemporal scales

(Lorenz 1969; Hohenegger and Schar 2007), many forecasting

centers in the midlatitudes use CP ensembles prediction sys-

tems for operational and research purposes (Gebhardt et al.

2011; Schwartz et al. 2015; Raynaud andBouttier 2016;Hagelin

et al. 2017). Several verification studies have shown the benefits

of these CP ensembles, mainly for midlatitude regions in-

cluding the United States (Snook et al. 2019; Schwartz 2019;

Gowan et al. 2018; Schwartz and Sobash 2017), United

Kingdom (Cafaro et al. 2019; Mittermaier and Csima 2017),

northern and continental Europe (Frogner et al. 2019; Klasa

et al. 2018; Pantillon et al. 2018; Schellander-Gorgas et al.

2017), and eastern China (Li et al. 2019).

Only a few studies have dealt with short-range CP ensemble

over tropical regions and in particular Africa. Torn (2010)

experimented with a CP model (4-km horizontal grid spacing)

nested inside a mesoscale ensemble (36-km grid spacing) and

found that forecasts of African easterly waves from the two

ensembles had similar sensitivities to initial conditions, which

included various perturbation and initialization times. Maurer

et al. (2017) evaluated a CP-ENS using COSMO (2.8-km grid

spacing) with land surface and atmosphere perturbations over

West Africa. Their single-model setup [using analyses from

the European Centre for Medium-Range Weather Forecasts

(ECMWF) ensemble] was shown to have higher skill (reli-

ability and sharpness) than the multimodel setup (using ana-

lyses from three different models) in predicting precipitation,

although more underdispersive.

While previous studies have focused on case studies to test

the benefits of CP ensemble in forecasting for tropical Africa,

the use of CP ensemble in an operational set up has not yet

been considered. As part of the African Science for Weather

Information and Forecasting Techniques (SWIFT) project

(https://africanswift.org/), the Met Office ran a CP ensemble

prediction system for the first time in East Africa to support

the forecasting testbed hosted by the Kenya Meteorological

Department during April–May 2019. The aim of the testbed

was to fill the gap between research and forecasting activities

(e.g., Ralph et al. 2013). For instance, the Kenya Meteorological

Department currently issue heavy rain warnings based on 24-h

accumulations determined from parameterized convection fore-

casts, by using plots from the global Met Office, Global Forecast

System (GFS) and ECMWF through theWMO SevereWeather

Forecast Project (SWFP) (e.g., http://www.meteo.go.ke/pdf/

Heavy\%20Rainfall\%20Alert\%2023rd\%20Jan-2020.pdf).

CP deterministic and ensemble forecasts could allow for

warnings with more spatial and temporal specificity.

In this paper, we compare and evaluate the CP and global

ensemble forecasts over East Africa and consider the impli-

cations for operational use of CP ensemble when forecasting

precipitation in Tropical Africa. The overarching question of

this study is as follows: are CP ensemble forecasts more skillful

than global ensemble and deterministic forecasts (both of

which are less expensive to run and already operational for

East Africa)? To address this question, a neighborhood based

approach is applied to both ensembles and deterministic

forecasts, after applying a threshold to the rainfall field. This

approach allows us to evaluate the added skill in the CP en-

semble due to the additional degree of smoothing provided by

averaging across all the ensemble members compared to just

applying the spatial averaging to the deterministic forecasts

Using this approach for the United States, Schwartz et al.

(2017) found that their 3-km CP ensemble outperformed the

1-km individual members and they attributed this to ensem-

ble averaging filtering out noise from unpredictable scales.

Such an evaluation has not previously been performed in a

tropical region.

The paper is structured as follows: section 2 describes the

forecasts and the observational data used for the analysis along

with the methodology including the neighborhood approach.

General characteristics of the forecasts (diurnal cycle, spread)

are described in section 3. In section 4 we present the

probabilistic verification, including the comparison of the

CP ensemble against the deterministic and global forecasts.

Additional spatial verification of the CP ensemble is pro-

vided in section 5, considering different skill metrics and

ensemble postprocessing options to support future opera-

tional use. Conclusions and directions for future work are

offered in section 6.

2. Data and methodology

a. Data

1) FORECASTS

The simulations supporting the SWIFT forecasting testbed

were run from 19 April to 12 May 2019, giving a total number

of 24 days. The Met Office Unified Model (MetUM) Tropical

East Africa CP ensemble model (hereafter CP-ENS) was

run as a downscaler of the of the global ensemble, similar to the
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set-up used by the Met Office CP model (MOGREPS-UK) up

to March 2016 (Hagelin et al. 2017) and for the CP model over

Singapore (Porson et al. 2019). Here, the initial and boundary

conditions for each CP-ENS member are taken from the

MetUM global ensemble (MOGREPS-G, Bowler et al.

(2009), running with a horizontal grid spacing of 0.288 with 18

members.

The CP-ENSwas run with 80 vertical levels with model lid at

38.5 km and at a horizontal grid spacing of 0.048 (;4.4 km) for a

domain size of 6003 600 grid points spanning East Africa (see

Fig. 1). It consisted of 18 members, initialized four times a day

(at 0000, 0600, 1200, and 1800 UTC) and ran out to 72 h. The

science configuration of the dynamics and physics schemes of

the atmosphere and land used for the tropical regions, denoted

with ‘‘RAL1-T,’’ are documented in Bush et al. (2019) and is

the same used in Porson et al. (2019). In particular the tropical

configuration differs from the midlatitude configuration used

forMOGREPS-UK for these reasons: a different set of vertical

levels (more levels in the upper troposphere to allow for a

higher tropopause), the presence of boundary layer stochastic

perturbations in the midlatitude configuration (useful to initi-

ate convection earlier) and not in the tropical configuration, as

well as the use of a prognostic cloud scheme (PC2) in the

tropical configuration.

The version of MOGREPS-G run operationally did not

provide the diagnostics required for the forecasting testbed,

so a limited-area model with global model configuration, in-

cluding the convective parameterization scheme (Walters et al.

2017) was also nested within MOGREPS-G. It is this limited

area version (hereafter Glob-ENS), with the same horizontal

grid spacing of MOGREPS-G, that will be used for comparison

against the CP-ENS in this paper. Apart from its limited-area

setup, the Glob-ENS only differs from the MOGREPS-G

configuration by not having stochastic physics activated.

The stochastic physics perturbations used in MOGREPS-G

were technically difficult to replicate in the Glob-ENS lim-

ited-area setup and were therefore switched off. The impact

of the stochastic physics on the spread of MOGREPS-G is

much smaller than the impact of initial condition perturba-

tions. For the purpose of this paper and the SWIFT testbed,

rather than running a separate deterministic configuration,

the control members of each respective ensemble (CP-ENS

and Glob-ENS) were selected to represent the deterministic

forecasts (CP-DET and Glob-DET).

2) OBSERVATIONS

The sparsity of ground observations in tropical regions of

Africa makes model verification more challenging than in

midlatitude regions. Therefore, precipitation forecasts were

compared to gridded satellite observations derived from the

Global Precipitation Measurement (GPM) mission (Hou et al.

2014), specifically the Integrated Multisatellite Retrievals for

GPM (IMERG) Final Precipitation, version 6 (V06), level 3

product (Huffman et al. 2018; Tan et al. 2019), which we will

refer to as GPM-IMERG. GPM-IMERG was preferred over

other satellite derived products due to its high temporal and

spatial resolution (half-hourly and 0.18), which is essential to

demonstrate the CP model capabilities on subdiurnal time

scales. GPM-IMERG has been used extensively for model

verification in the tropics, including Africa (Kniffka et al. 2020;

Woodhams et al. 2018; Stein et al. 2019). The use of GPM-

IMERG comes with some caveats: over southern West Africa,

Maranan et al. (2020) found that GPM-IMERG overestimated

the frequency and intensity of weak precipitating systems,

while it underestimated the intensity of heavier rainfall events.

For specific case study days with heavy rainfall events over

South Africa, Stein et al. (2019) found that GPM-IMERG

matched the radar-observed spatial pattern of rainfall well al-

though not necessarily the amounts. However, in comparison

against rain gauges, Dezfuli et al. (2017a) found that GPM-

IMERG captured well the annual cycle and the diurnal cycle

during the March–April–May ‘‘short rains’’ season over East

Africa, which is the focus period of this study.

3) SPATIOTEMPORAL MATCHING

Both the CP-ENS and Glob-ENS rainfall fields were regrid-

ded to match the GPM-IMERG grid using the conservative

method of the Climate and Forecast (cf) package (https://ncas-

cms.github.io/cf-python/introduction.html). Analysis will focus

on the 3-h accumulated precipitation since, followingWoodhams

et al. (2018), the benefit of CP models compared to global

models is potentially best demonstrated on subdaily scales.

The spatial domains used in this analysis are shown in Fig. 1.

To illustrate regional variability in rainfall characteristics,

such as the diurnal cycle, different subregions were selected

(black dashed boxes in Fig. 1). These subregions correspond

to the wettest locations, both in terms of rainfall amount and

number of days with daily accumulation equal or exceeding

10 mm day21 (Fig. 2) and can be characterized by the

presence of lakes, mountains, and coastlines, which induce

local circulations affecting the phase and amplitude of the

diurnal cycle.

FIG. 1. A map showing the elevation for the domain spanned

by the convection-permitting ensemble model for tropical East

Africa. Black dashed boxes enclose the different subregions con-

sidered for regional differences in rainfall characteristics, including

the Lake Victoria basin (LV). The red dashed box encloses the

region used for calculating the fractions skill score (FSS). Ocean

points are not considered.
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b. Forecast spatial verification methods

Despite greater physical realism provided by CP models

compared to global models, they are not expected to match

perfectly with observations on a gridpoint scale. Therefore,

traditional gridpoint verification methods have given way to

neighborhood (or ‘‘fuzzy’’) verification methods (Ebert 2008;

Gilleland et al. 2009). In addition to their use in verification,

neighborhood methods have also been used to generate

probabilities from deterministic forecasts (Theis et al. 2005),

by taking the mean of the number of grid points exceeding a

particular threshold within each neighborhood (hereafter the

neighborhood probability, NP). Schwartz et al. (2010) extended

this methodology to ensemble forecasts by further averaging the

spatial mean over all the members, a technique which Ben

Bouallègue and Theis (2014) referred to as smoothing. Schwartz

and Sobash (2017) subsequently named it the neighborhood

ensemble probability, which is howwewill refer to it in this paper.

Here, probabilistic forecasts generated using the ‘‘neighborhood

ensemble probability’’ (NEP) are compared to probabilistic fore-

casts generated with the NP method from the deterministic fore-

casts. The twomethods canbedescribedmathematically as follows:

d First, a common step in generating probabilities either from

ensembles or deterministic forecasts is to convert the rainfall

accumulation field fij into a binary field by applying a thresh-

old qj, for each grid point i and ensemble member j:

BP
ij
5

�
1, if f

ij
$ q

j
,

0 , otherwise,
(1)

d Next, in the case of ensembles, the ensemble mean of the

binary field is calculated:

EP
i
5

1

N2 1
�
N21

j51

BP
ij
, (2)

d Finally, for each grid point i, the spatial mean over each

square neighborhood Si, consisting of Nb grid points, is

calculated:

NEP
i
:5

1

N
b

�
Nb

k51

EP
k
, k 2 S

i
, (3)

NP
i
:5

1

N
b

�
Nb

k51

DP
k
, k 2 S

i
. (4)

Thus, NP is only a spatial average, whereas NEP is an ensemble

average as well as a spatial average (see also Schwartz and

Sobash 2017). By comparing NEP and NP, we therefore assess

whether the ensemble adds skill to simple neighborhood av-

eraging provided byNP. For spatial verification, we process the

observations as a binary field [Eq. (1)] when using the relative

operating characteristic (ROC) and fractional [Eq. (4)] when

using the fractions skill score (see section 4 for specifics).

where qj is the percentile threshold calculated for each

member separately and BPij refers to the binary probability.

where EPi refers to the ensemble mean probability and N

is the number of ensemble members. The sum starts from 1,

because the control member (member 0, unperturbed) is

FIG. 2. (a)–(c) Total accumulated precipitation (mm) between 0000UTC 20Apr 2019 and 0000UTC 13May 2019 and (d)–(f) number of

rainy days (defined by exceeding a daily accumulation of 10mm) for GPM-IMERG and the ensemble mean of the model rainfall. The

forecast precipitation is from the T 1 12 to T1 36 h accumulation, initialized at 1200 UTC for each day of the period.
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excluded from the calculation of the probabilistic forecast

and has been selected to represent the deterministic forecast,

see section 2. In the case of deterministic forecasts (i.e., the

control member), we define the deterministic probability

DPi:5 BPi0.

An example of NEP and NP probabilistic products is shown in

Fig. 3. Figure 3a shows the observed rainfall accumulation for

29 April 2019 between 0300 and –0600 UTC, and Fig. 3b shows

the observations as a neighborhood probability (NP) of ex-

ceeding 10mm. The accumulations predicted by the control

member of the CP and global ensembles are shown in Figs. 3c

and 3g, respectively, with the corresponding NPs in Figs. 3d

and 3h. Figures 3e and 3i show the ensemble mean accumu-

lations for the CP and global ensembles, respectively, and the

NEPs are shown in Figs. 3f and 3j. Note that the NEP is not

the same as the NP of the ensemble mean; rather, the NEP is

the average of the NPs across all ensemble members. It is also

worth to notice that probabilities from the global model

(Figs. 3h,j) are below 0.1, lower than the corresponding

probabilities from the CP model (Figs. 3d,f). In general, NEP

will be lower than NP because the probability field has un-

dergone more smoothing, as discussed previously.

3. Rainfall characteristics: Intensity and diurnal cycle

In this section, an analysis of the characteristics of rainfall

intensity and timing is performed to provide a qualitative as-

sessment of the CP versus global-configuration simulations

FIG. 3. Observational or forecast data for the 3-h rainfall accumulation between 0300 and 0600 UTC 29 Apr 2019. Forecast data are

taken from the 1200 UTC initialization on 27 Apr 2019 (T 2 39–42). Probabilities are for 3-h rainfall accumulation exceeding 10mm

within an n 5 15 (;165 km) neighborhood: (top) GPM observations, (middle) CP-ENS forecast, and (bottom) Glob-ENS. (a),(c),(g)

Rainfall accumulation and (b),(d),(h) neighborhood probability [NP, Eq. (4)] of threshold exceedance from observations (in the top

panels) or the control member of the ensemble (in the middle panels). (e),(i) Ensemble mean rainfall accumulation and (f),(j) neigh-

borhood ensemble probability [NEP, Eq. (3)].
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against satellite-derived rainfall observations. First, Fig. 2

shows maps of the total accumulated rainfall over all the

forecasts for GPM-IMERGand the ensemblemean for each of

CP-ENS and Glob-ENS. The CP-ENS agrees better with the

observed patterns of precipitation, but in places, such as

southern Ethopia, the CP-ENS overestimates the rainfall ac-

cumulation with respect to GPM-IMERG. The Glob-ENS

accumulations are lower with respect to observations almost

everywhere (Figs. 2b,c), which could be due to the underesti-

mation of heavy rainfall rates by the global model (Woodhams

et al. 2018). Off the Tanzania coast, we assume that the im-

proved performance of Glob-ENS with respect to other re-

gions is related to large-scale and slow-varying signals, such as

the intertropical convergence zone (ITCZ) position, and per-

haps an indirect consequence of the Tropical Cyclone Kenneth

affecting the region between Madagascar and Mozambique

during this period.

a. Diurnal cycles

To investigate the diurnal cycle of rainfall in the different

subregions (cf. Fig. 1), hourly rainfall fields are spatially aver-

aged over each subregion for each day and ensemble member

and then averaged over the different forecasts. Results for the

1200 UTC initialization are shown in Fig. 4, for lead times of

12–60 h. While we note slight differences with the other ini-

tialization times (not shown), the qualitative behavior is as

follows:

d Timing: In agreement with previous MetUM studies for trop-

ical Africa (Pearson et al. 2014; Birch et al. 2014; Woodhams

et al. 2018), the CP-ENS shows a better representation of the

diurnal cycle than the Glob-ENS when compared to GPM-

IMERG observations. The daytime peaks of observed rainfall

are generally well predicted by the CP-ENS, especially over

the Somali coast, where the sea breeze was probably the

driver of the rainfall systems (Camberlin et al. 2018).

Nighttime peaks are missed over Tanzania, Uganda, and

southern Ethiopia (Figs. 4a,c,d) by the CP-ENS. In regard

to the Glob-ENS, it tends to predict an earlier peak than

observed in all the regions, except over Lake Victoria,

where the Glob-ENS peaks at the same time of CP-ENS

and GPM-IMERG observations. This is in agreement with

Woodhams et al. (2018) who found that, over the Lake

Victoria basin, the parameterizing convection model re-

produced well the timing of the rainfall peak, although

underestimating the intensity.
d Intensity: Rainfall intensity of the peak is generally well

estimated by the CP-ENS up to 36h, especially over Tanzania

(Fig. 4a), Uganda (except for the nighttime peak, Fig. 4b)

and Nairobi area (Fig. 4f). In other regions the peak of

rainfall is either overestimated (south Ethiopia at T 1 24 h,

Fig. 4d), underestimated (as for Lake Victoria, Fig. 4b) or

missed (as for south Ethopia and Uganda at about T1 36 h).

For day-2 forecasts (from 36 h up to 60 h), the CP-ENS

performance deteriorates over the coast and Nairobi area,

where it overestimates the observed peak (Figs. 4e,f, re-

spectively). As time progresses, rainfall increases in the

Glob-ENS for all subregions except for the Nairobi area and

decreases for the CP-ENS over all subregions except for the

FIG. 4. Mean hourly rainfall for the models and observations with the panels showing averages for the different

subregions (as in Fig. 1). Green and blue shadings represent the envelopes of the 18 ensemble members comprising

the CP-ENS and Glob Ens, respectively, with solid lines indicating the control members. The black solid line

represents theGPM-IMERG satellite observations. Values on the x axis represent starting forecast hours of the 3-h

accumulation periods (e.g., an x-axis value of 24 is for 3 h accumulated between 24 and 27 h). The black vertical solid

line indicates the valid time of midnight (in UTC).
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Somali coast. The gradual decrease in rainfall in CP config-

urations of the MetUM was also observed over Southeast

Asia by Dipankar et al. (2020), who noted that this behavior

depended on the driving model.
d Spread: The envelopes of rainfall intensity vary between the

different subregions: smaller over the coastal regions and

greater over the surroundings of Nairobi and Lake Victoria,

with the CP-ENS generally showing greater envelopes than

the Glob-ENS.

b. Areal coverage

Aggregate areal coverage of the 3-h rainfall accumulation

exceeding defined thresholds provides complementary infor-

mation to the mean diurnal cycle. Different rainfall thresholds

were selected [1, 2.5, 5, 10, 25, 50mm (3 h)21]. Here results

relative are presented in Fig. 5 for the 10mm (3 h)21 threshold.

Figures relative to other thresholds are included in the sup-

plemental material. For thresholds up to 5mm (3 h)21 CP-ENS

has areal coverage less than or equal to GPM-IMERG, whereas

Glob-ENS has greater areal coverage than both GPM-IMERG

and CP-ENS for thresholds up to 2.5mm (3h)21. This demon-

strates that Glob-ENS predicts lighter and more widespread

rainfall than both observations and the convection-permitting

model, in line with previous findings with the MetU and also

other studies over theUnited States using theWeatherResearch

and Forecasting (WRF) Model (e.g., Schwartz and Liu (2014).

For the 10mm (3h)21 accumulation shown here and for greater

thresholds (not shown), CP-ENS has greater areal coverage than

both the observations and Glob-ENS in all the regions, except

for Lake Victoria at T 1 24 and T 1 48 h.

Although the diurnal cycle is represented better by CP-

ENS than by Glob-ENS, the former predicts too little light

rainfall and too much heavy rainfall with respect to GPM-

IMERG. The latter finding helps explain the overestimate

of the rainfall amplitude seen in Fig. 4. Overestimation of

the rainfall amount by CP models was also found by

Marsham et al. (2013); Dipankar et al. (2020), among

others. Also, in agreement with Fig. 4, areal coverage in

Glob-ENS peaks earlier than observed, apart from over

the coast.

c. Ensemble characteristics

To assess the spread–error relationship, the root-mean-

square error (RMSE) of the domain averaged rainfall over

each subregion is computed and compared to the ensemble

spread, calculated as the square root of average ensemble

variance as in Fortin et al. (2014).

For a perfect ensemble, the spread resembles the RMSE of

the ensemble mean (Leutbecher and Palmer 2008; Fortin et al.

2014). In Fig. 6, we show these quantities for the 3-h rainfall

accumulation averaged over the different subregions and for

both ensembles. For all subregions and for most of the times,

FIG. 5. (a)–(f) Fractions of grid points exceeding the accumulation of 10mm (3 h)21 for each

panel corresponding to the different subregions. Values on the x axis represent starting forecast

hours of the 3-h accumulation periods (e.g., an x-axis value of 24 is for 3 h accumulated between

24 and 27 h). Solid (dashed) black vertical lines refer to the valid time of midnight (mid-

day) in UTC.
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both ensembles are underdispersive, i.e., the ensemble spread

is lower than the RMSE. Underdisperion is a well-known

issue for convection-permitting ensembles (Porson et al.

2020; Loken et al. 2019; Romine et al. 2014), but the Glob-

ENS is generally more underdispersive than the CP-ENS,

with a higher RMSE and a lower spread. The spread–error

relationship—and thus the level of underdispersion—varies

across the different subregions and with time (cf. Figs. 4 and

5). For instance, a larger offset in the timing of the peak in

rainfall leads to a broad peak in RMSE for Glob-ENS in most

of the subregions. The worse initiation of the peak of coastal

rainfall by the CP-ENS on day 2 also leads to a greater RMSE

compared to day 1 (Fig. 6e). Similar to RMSE, spread follows

the diurnal cycle, peaking when the rainfall intensity is larg-

est. The spread–error relationship will also be evaluated

spatially in section 5.

4. Probabilistic forecast verification

In this section, probabilistic forecasts from the CP-ENS will

be verified and compared against the global and deterministic

configurations using two metrics: the fractions skill score (FSS)

and the area under the receiver operating characteristic (ROC)

curve. They measure two different attributes of a forecasting

system, namely the spatial displacement of rainfall patterns

and the discriminating ability between events and no-events,

respectively.

a. Fractions skill score

The FSS (Roberts and Lean 2008) was originally designed

for deterministic forecasts to account for the uncertainty in

forecasting the location of rainfall and mitigate for the double

penalty when rainfall is displaced. With the FSS, the fractions

of values above a given threshold within a given neighborhood,

are evaluated, leading to values ranging from 0 (no skill) to 1

(perfect forecast). Roberts and Lean (2008) also introduced

the useful scale as the neighborhood size where FSS5 0.51 f0/2

(or FSS 5 0.5 if f0 , 0.2 Skok and Roberts 2016), where f0 is

the observed rainfall frequency, i.e., the fraction of observed

points exceeding a threshold. Following Mittermaier et al.

(2013), percentile thresholds will be used in order to focus

only on the spatial error of the predicted rainfall pattern and

to avoid incorporating a frequency bias (see Fig. 5). As de-

scribed in section 2, for the ensembles we will use NEP (CP

NEP and Glob NEP) and for the deterministic forecasts NP

(CP Det NP and Glob Det NP). GPM-IMERG observations

have also been processed into NP for each given neighbor-

hood size (see Fig. 3 for one example).

The choice of percentile requires a balance between a low

enough percentile that gives meaningful statistics, so enough

FIG. 6. Ensemble spread (dashed lines) and RMSE of the ensemble mean (solid lines) of the

3-h rainfall accumulation averaged over the different subregions. The values on the x axis

represents the starting forecast hours for each accumulation period (e.g., 12 is the 3-h accu-

mulation period between 12 and 15 h). Solid (dashed) black vertical lines refer to the valid time

of midnight (midday) in UTC.
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spatial coverage (events are not too rare), and a high enough

percentile that is related to meaningful (heavy) rainfall values

relevant for forecasting in the tropics. In Fig. 7, we show the

ensemble spread in average physical thresholds corresponding

to different percentiles at different times of the day for the

large domain (red dashed box in Fig. 1). As expected from

areal coverages relative to other thresholds, included as sup-

plemental material, the Glob-ENS has higher physical values

than the CP-ENS for the 90th percentile (Fig. 7a), comparable

values for the 95th percentile (Fig. 7b) and lower physical

values for the 99th percentile and above (Figs. 7d–f). Biases in

the timing of convection described in the previous section can

also be identified from Fig. 7. Note, however, that the FSS is

calculated for each 3-h period separately on the domain en-

closed by the red dashed line as in Fig. 1, with the relevant

percentile threshold calculated for each period separately as

well, so that any frequency bias due to the timing of the diurnal

cycle will not influence the skill. Finally, in order to get a

summary score, FSS is then averaged over the different cases,

using equation S30 of the supporting information document by

Skok and Roberts (2016). Several factors could affect model

performance in terms of FSS: neighborhood size Nb, rainfall

percentile, accumulation period, but also valid time and ini-

tialization time. In Fig. 8, we show FSS as a function of forecast

time for different percentile thresholds, considering only the

1200 UTC initialized forecasts and using a neighborhood scale

of n5 23 grid points (255 km). CP NEP has the highest FSS for

all the different percentiles and at nearly all times. The CPDet

NP is generally more skillful than Global NEP, while Global

NEP is more skillful than the Global Det NP. We see that FSS

decreases with forecast lead time—particularly when com-

paring day 1 and day 2—and as the percentile increases. For the

99th percentile and above (associated with rainfall accumula-

tions greater than 30mm (3 h)21 for the CP-ENS and 10mm

(3 h)21 for GPM-IMERG and Glob-ENS), all configurations

mostly have FSS below 0.5, the useful skill value, although the

Global NEP and Global Det NP struggle attaining useful skill

already at the 97th percentile. This is likely due to the most

intense events being localized in nature and therefore more

difficult to forecast. Compared to Fig. 8 in Schwartz (2019),

who performed a similar analysis over United States, FSS re-

mains low for all percentiles, despite our use of a larger

neighborhood. Our values are comparable, however, to those

found over a small domain centered on Singapore by Sun

et al. (2020).

The FSS shows a diurnal cycle, with the strongest amplitude

generated from the CPmodel: it peaks at around T1 24 h and

T 1 48 h for percentiles up to the 97th, which coincides with

the timing of maximum rainfall (see Fig. 7). For percentiles

equal or greater than the 99th, FSS shows additional peaks at

FIG. 7. Average physical thresholds [mm (3 h)21] over all the forecasts corresponding to

(a) 90th, (b) 95th, (c), 97th, (d) 99th, (e) 99.5th, and (f) 99.9th percentile threshold as a function

of the forecast hour. The physical thresholds were computed for the large domain (red dashed

box in Fig. 1) for each day and for each 3-h period separately. The green and blue shadings

encompass the CP and global ensembles distributions, respectively. Values on the x axis rep-

resent starting forecast hours of the 3-h accumulation periods (e.g., an x-axis value of 24 is for

3 h accumulated between 24 and 27 h).
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T1 12 h and T1 36 h, corresponding to the nighttime storms,

depicted also by Fig. 7. Since the selection of percentiles re-

moves the frequency bias from the FSS, the diurnal cycle is

somewhat unexpected, although diurnal signals in the FSS

have previously been reported (e.g., Schwartz 2019). A pos-

sible explanation concerns the spatial organization of rainfall.

At the grid scale (i.e., neighborhood size n 5 1), the FSS

reaches its maximum around T 1 12 h and T 1 36 h (not

shown) when convection appears more organized, and as the

neighborhood size increases FSS peaks atT1 24 (as in Fig. 8),

when convection appears more scattered. The neighborhood

approach thus appears to have a greater impact on scattered

patterns, which are likely better captured by the CP model,

thus allowing it to more significantly outperform the Global

model at those hours. This varying behavior of FSS with the

pattern of convection was also noted for U.K. convection by

Flack et al. (2018) and related to differences in large-scale

forcing for their case studies.

In our remaining analysis with the FSS, we will only present

results for the 97th percentile, at which all models butGlobDet

NP have useful skill at some times at the scale shown in Fig. 8 or

larger, and for which the physical value [;6mm (3 h)21 for

GPM-IMERG, up to 15mm (3 h)21 for CP-ENS] can be con-

sidered high enough to be related to intense rainfall (Fig. 7). In

Fig. 9, we show the FSS as a function of neighborhood size as

well as forecast time. FSS increases with neighborhood size (as

expected and by construction, see Roberts and Lean 2008) and

decreases with time, the latter consistent with Fig. 8. Also

shown in Fig. 9 are the mean and median useful scale, calcu-

lated over the useful scales determined for each of the 24

forecasts, where the maximum length of the domain is used if

FSS # 0.5 for all neighborhood sizes (Sun et al. 2020). The

mean useful scale is always greater than the median, as found

by Sun et al. (2020), but this difference is greatest in the global

forecasts, implying that these have greater outliers in useful

scale than the CP forecasts. As with the FSS, the mean useful

scale increases with forecast lead time and has a diurnal cycle

which is most evident in the CP forecasts. Generally, the CP-

ENS has the highest FSS and therefore the smallest useful scale

(;100 km). Also, theGlob-ENS performs better than theGlob

DET. We consider the useful scale as a metric in more detail

for the different forecast pairs in Fig. 10. A bootstrap technique

was employed to characterize uncertainty: 24 samples were

drawn randomly (with replacement) from the 24 forecasts,

after which the mean useful scale was calculated for each

forecast model, including the difference between forecast

model pairs. Following Schwartz and Liu (2014), this process

was repeated 5000 times allowing estimation of the 95% con-

fidence interval. The largest bootstrapped mean difference in

useful scale between CP NEP and CP Det NP is about 100 km

(Fig. 10a) and between CPNEP andGlobal NEP about 150 km

(Fig. 10b), but these differences do not occur at the same time

in the forecast run. CP NEP is more skillful than CP Det NP in

terms of the bootstrapped mean useful scale, with the smallest

FIG. 8. Mean FSS corresponding to the (a) 90th, (b) 95th, (c) 97th, (d) 99th, (e) 99.5, and

(f) 99.9 percentile as a function of the forecast hour on a fixed neighborhood size of n5 23 grid

points (;255 km), calculated over the large domain. Values of the FSS useful scale are rep-

resented by dashed horizontal lines. Values on the x axis represent starting forecast hours of the

3-h accumulation periods (e.g., an x-axis value of 24 is for 3 h accumulated between 24

and 27 h).
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differences (which are not significantly different from zero)

between around 1200 UTC (T1 24 and T1 48). This suggests

that explicitly resolving convection would be sufficient for

predicting the location of intense rainfall over East Africa

domain at the time of peak rainfall (as confirmed by the CPDet

NP and Global NEP comparison in Fig. 10c), whereas the CP-

ENS has additional skill at other times and at longer lead times.

Compared to the global model, both CP NEP and CP Det NP

have better useful scale (significantly different from zero) at

the time of peak rainfall, but their superiority is no longer

evident after day 1. The Glob-ENS is generally more skillful

than Glob Det NP in terms of useful scale (Fig. 10d), although

again this difference is not significantly different from zero.

The influence of initialization times on the FSS as a function of

valid time was also investigated. Considering only the CP-

derived forecasts, none of the initialization times clearly out-

performs the others (not shown). For the global forecast, the

1800 UTC was found to have higher skill for the ensembles at

all valid times, followed by the 0600 UTC run.

FSS was also calculated for 24-h accumulations exceeding

the 97th percentile for comparison with Woodhams et al.

(2018). This is the accumulation period mostly used by African

weather agencies, partners of the SWIFT project. Figure 11

shows that for 24-h accumulations, the CP-based forecasts

are more skillful than Glob det NP and Glob ENS for both

the periods, with useful scale at about 150 km. Note that the

improvement in useful scale from CP Det to CP-ENS is

fairly small, at around 10 km for 24-h accumulations, similar to

the grid scale. However, this difference in the useful scale is

smaller than the one for the 3-h accumulation (cf. Fig. 9). The

improvement from global to CP is more pronounced than

found by Woodhams et al. (2018), but we note that the latter

had a longer dataset, which included dry spells, compared to

our 2-week wet period.

b. Areas under the ROC curve

Areas under the ROC curve (AUC; Mason and Graham

2002) were computed for different neighborhood sizes, rainfall

thresholds and initialization times for the 3-h rainfall accu-

mulation NEP and NP probabilistic forecast. Physical fixed

thresholds were used rather than percentiles, because we want

to have a unique definition for events and nonevents across

models and observations. The use of physical thresholds is

justified because the ROC curve and derived scores are in-

sensitive to any lack of reliability by probabilistic forecasts or

forecast biases (Kharin and Zwiers 2003; Vogel et al. 2018). A

threshold of 10mm (3 h)21 was chosen for relevance to intense

events in all three datasets, roughly the 97th percentile for CP

and 99th percentile for global and observations (see Fig. 7).

ROC statistics have been aggregated on each of the subregions

(Fig. 1) with contingency tables populated following the

methodology described by Schwartz and Sobash (2017) and

Vogel et al. (2018). Specifically, at each grid point, observations

are treated as binary [BP, see Eq. (1)] whereas the forecasts are

treated as NEP (ensembles) or NP (deterministic).

Figure 12 shows AUC values for the NEP and NP fore-

casts exceeding the 10-mm accumulation in 3 h for the

1200 UTC initialization on a neighborhood size of n 5 23

FIG. 9. Mean FSS as function of forecast hour and neighborhood length side (calculated over

the large domain). The solid (dashed) red line indicates the mean (median) scale at which FSS

5 0.5 over all the different forecasts. The dashed horizontal purple line indicates the 150-km

scale. Values on the x axis represent starting forecast hours of the 3-h accumulation periods

(e.g., an x-axis value of 24 is for 3 h accumulated between 24 and 27 h). Vertical solid (dashed)

white lines indicate midnight (midday) UTC.
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grid point (; 255 km), where AUC . 0.5 indicates ability to

discriminate between events and no-events. For most of the

times and subregions, CP NEP (solid green) has higher

AUC values than the other forecasts, with the highest values

at times when convection peaks and lowest values during the

diurnal minimum. The time of maximum AUC varies across

the subregions, similar to the diurnal cycles shown in Fig. 5:

when convection is most active, there are more events to be

detected, potentially leading to higher hit rates (and higher

false alarm rate) implying higher AUC values and vice

versa. At the times of peak convective activity, AUC CP

NEP reaches values greater than 0.7, which is above the

threshold of usefulness for probabilistic predictions (Buizza

et al. 1999). None of the other forecasts reach above this

threshold value for significant periods of time, apart from

the Glob NEP for the coastal region. For all subregions,

similar conclusions can be drawn from AUC analyses using

different rainfall thresholds and neighborhood sizes (not

shown), with CP NEP retaining AUC above 0.7 and AUC

differences between CP NEP and other forecasts increasing

for higher thresholds. AUC for the large domain is shown as

supplemental material.

5. Spatial spread–error relationship for CP-ENS

In general, the CP-ENS has been shown to be the most

skillful model for predicting rainfall over East Africa. Given

the novelty of CP-ENS in this region, it is vital to understand

how the ensemble data may be processed to provide the best

forecast guidance. Using a variety of FSS scores to represent

the different guidance, this section will explore which is the

most skillful diagnostic rainfall forecast that can be derived

from the CP-ENS, and therefore offer the greatest potential

to local forecasters. So far, the FSS has been computed for

the neighborhood ensemble probability (NEP), thereby

assessing the ability of the ensemble to predict the proba-

bility of exceedance of a threshold rainfall accumulation.

However, rainfall accumulation predictions from ensembles

may also be presented as the ensemble mean, or as a col-

lection of the individual ensemble members (e.g., as postage

stamp plots). To assess the predictive skill using these dif-

ferent methods, corresponding variations of the FSS are

computed. FSSens_mean is the FSS computed using the

neighborhood probability (NP) of the ensemble mean (i.e.,

essentially treating the ensemble mean as a deterministic

forecast). Although taking the mean of all ensemble mem-

bers unrealistically smooths out the intense regions of pre-

cipitation and lowers rainfall rates, this FSS analysis uses

percentile thresholds, such that it is only the placement of

the rainfall—not the amount—which is evaluated. FSS is

also computed using the neighborhood probability for each

individual ensemble member (FSSem), with FSSdet dis-

tinguishing the control member. More details about these

different scores are provided in Table 1.

FIG. 10. Differences (in km) of the mean useful scales as a function of forecast hour for the

different model pairs (calculated over the large domain), represented by the solid line. The

shading represents the 95% confidence interval calculated using a bootstrap resampling with

replacement. Black solid (dashed) lines indicate the 0000 UTC (1200 UTC) valid time. The

values on the x axis represent the starting forecast hours for each accumulation period (e.g., 12

is the 3-h accumulation period between 12 and 15 h). Positive values indicate that the first

forecast for each pair is more skillful and vice versa.
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Figure 13 shows the different FSS metrics as a function of

lead time using the 97th percentile threshold and a neighbor-

hood size of ;250 km. Skill scores for forecasts with less than

12-h lead time are shown for interest, but it should be consid-

ered that these forecasts are still within the spinup period. In

agreement with findings by Woodhams et al. (2018) for a CP

deterministic model over East Africa, 0900–1800 UTC is the

most skillful time of day according to FSSNEP, FSSdet, and FSSs

of the individual ensemble members, especially at lead times

exceeding 36 h (Figs. 13d–f). FSSens_mean shows the most

skillful times to be 0300–0900 UTC at lead times shorter than

36 h. For all metrics, 2100–0000 UTC shows the lowest skill,

suggesting the model may be unable to capture storms which

persist overnight. Between 2100–0000 and 0000–0900 UTC, all

metrics show that skill is greatest closer to the valid time (short

lead times). For other valid times, skill remains fairly constant

or slightly reduces with decreasing lead time.

FSSNEP is almost always the highest score, suggesting that

the best way to display information from the CP-ENS is as a

probability of threshold exceedance (as was done in section 4).

Similar results were obtained by Schwartz et al. (2014), who

demonstrated that the best ensemble guidance was realized

by applying the neighborhood approach to the gridscale

probabilistic forecasts. FSSens_mean is greater than FSSdet when

convective activity is low (0000–0900 UTC, Figs. 13a–c), sug-

gesting that the ensemble mean adds value to the deterministic

model for the prediction of rainfall location during this time.

However, during the period of convective activity (0900–

1800UTC, Figs. 13d–f), the deterministic model is more skillful

than the ensemble mean out to a lead time of T 2 24 h. The

deterministic model is often at the upper end of the envelope of

skill of the individual members, especially at lead times shorter

than 54 h (cf. FSSdet and FSSem range), suggesting that the

ensemble perturbations may lead to a deterioration in skill.

In section 3 the spread–error relationship for rainfall intensity

was discussed. FSS can be used to show the spread–error rela-

tionship for the location of rainfall by comparing the mean FSS

between observations and each ensemblemember eFSSmean and

the mean FSS between each ensemble member–member pair

dFSSmean (Dey et al. 2014). For example, high dFSSmean indi-

cates that ensemble members are predicting rainfall in similar

locations, therefore the spatial spread is low. The standard

deviation of the FSS between each ensemblemember–member

pair dFSSstd is a measure of the range of dFSS values, where a

high dFSSstd suggests that there are some outlier members with

particularly high or low dFSS (Dey et al. 2014). Table 1 gives

more details about these measures. Figure 14 shows eFSSmean,

dFSSmean and dFSSstd for (Fig. 14a) 0000–0300 UTC and

(Fig. 14b) 1200–1500 UTC rainfall accumulations as a function

of lead time. These two times were chosen to be representative

of outside (Fig. 14a) and during (Fig. 14b) the main convective

period. The dFSSmean is greater than eFSSmean for both times

of day and all forecast lead times, showing that the uncertainty

in spatial location of the rainfall is not fully captured by the

ensemble. This is true for all times of day (not shown). Spatial

spread is lower during the convective period (1200–1500 UTC)

but fairly constant throughout the forecast (initialization de-

pendence aside). For the 0000–0300 UTC accumulation pe-

riod, the spread increases (dFSSmean decreases) as forecast lead

times increases. The 0600 and 1800 UTC initializations (circles

and diamonds) have a greater dFSSmean (i.e., lower spread)

than the 0000 and 1200 UTC initializations, possibly related to

the data assimilation cycle. The dFSSstd is lower for the 1200–

1500 UTC accumulation compared to the 0000–0300 UTC

accumulation, indicating that there are fewer major outlier

ensemble members during the convective period. Few outliers

during the main rainfall period suggests that the ensemble

perturbations are too small to affect major rain locations. This

is consistent with the findings from section 4 that CP NEP and

CPDet NP had similar FSS and similar useful scales during the

main convective period (corresponding to from T 1 24 to T 1
30 h for the 1200 UTC initialization, cf. Figure 10). Overall, the

FIG. 11.Mean FSS for the 24-h accumulation period as a function

of the neighborhood size for the period (a) from T1 12 to T1 36 h

and (b) from T 1 36 to T 1 60 h of the 1200 UTC initialization

(calculated over the large domain). The black dashed line refers to

the value of FSS 5 0.5, the useful scale as in the main text.
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high values of dFSSmean and low values of dFSSstd throughout

the diurnal cycle imply that the ensemble members are not

very spatially different from one another. The lack of spatial

spread also explains why FSSens_mean is often fairly similar to

FSSdet and often within the envelope of FSS of individual

members (Fig. 13).

6. Summary and conclusions

In an operational forecasting testbed environment that oc-

curred during April–May 2019, convection-permitting ensem-

ble forecasts were produced by theMet Office for tropical East

Africa for the first time. In this paper, potential benefits of the

CP ensemble were assessed compared to the driving global

ensemble, first in terms of rainfall characteristics (intensity and

diurnal cycle) and then by verifying probabilistic forecasts

calculated using a neighborhood approach. The ensemble

forecast results were compared with deterministic forecasts

(assembled from the ensemble control member). Probabilities

for the deterministic forecasts were computed for comparison

with the ensemble probabilities, by computing the fractions of

grid points exceeding a threshold within a given neighborhood.

To assess whether the CP ensemble forecasts added any skill

with respect to the global and deterministic forecasts, the FSS

was used to discern skill in the location of rainfall and the area

under the ROC curve (AUC) to assess the ability to discrimi-

nate between events and nonevents. The results of this analysis

can be summarized as follows:

1) Convection-permitting versus parameterized convection: The

CP ensemble model improves the representation of the

diurnal cycle with respect to the global ensemble over

most of the subregions. The global ensemble tends to peak

earlier than GPM-IMERG and CP ensemble, especially

for the afternoon rainfall peak, in agreement with previ-

ous studies for tropical Africa (Birch et al. 2014; Pearson

et al. 2014; Woodhams et al. 2018). However, in some

subregions (Uganda and southern Ethiopia) CP ensemble

is shown to miss the overnight/early morning peak in

rainfall. Further analysis is required to investigate the

reasons why the CP ensemble misses convective events in

these regions at these times of day. The CP ensemble

generally produces more rainfall with respect to GPM-

IMERG and the global ensemble, especially for higher

rainfall thresholds, also in agreement with other studies

(Kendon et al. 2012; Birch et al. 2014; Woodhams et al.

2018; Dipankar et al. 2020).

2) Spread–error relationship: Ensemble spread was assessed

both in terms of the rainfall amount, compared to the

RMSE of the ensemble mean of the two ensembles for the

different subregions and in terms of the spatial agreement

FIG. 12. Areas under the ROC for the probabilistic forecasts of 3-h rainfall accumulation

exceeding 10mm on a neighborhood size of n 5 23 grid points (approximately 255 km) ag-

gregated over the different subregions and generated either from ensembles (NEP) or control

members (NP). Values on the x axis represent starting forecast hours of the 3-h accumulation

periods (e.g., an x-axis value of 24 is for 3 h accumulated between 24 and 27 h).
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between ensembles for the CP ensemble. Both of the

analyses lead to the conclusion that CP ensemble is un-

derdispersive, i.e., not able to capture the expected error

associated with either the rainfall amount or the rainfall

spatial patterns. In particular, spatial spread was shown to

be lower for 0600 and 1800 UTC initializations. Also, the

RMSE-spread comparison showed that global ensemble is

more underdispersive than CP ensemble.

TABLE 1. Description of different FSS values as plotted in Figs. 13 and 14.

FSS Description Interpretation

FSSdet Traditional FSS from Roberts and Lean (2008) computed

applying Eq. (4) to the fractions taken from the CP control

member (CP Det NP as in the previous section)

Used as a comparison to find the added value of running

an ensemble

FSSNEP FSS computed applying Eq. (3) to the fractions of CP-ENS

members exceeding a threshold (CP NEP as in the previous

section)

Ability of the ensemble to predict the probability of

threshold exceedance

FSSens_mean The deterministic FSS is computed on the ensemble mean of

the rainfall field using Eq. (4)

Ability of the ensemble mean to predict threshold

exceedance

eFSSmean Mean of the deterministic FSS computed for each individual

ensemble member, defined in Dey et al. (2014)

Average ability of each ensemble member to predict

threshold exceedance

dFSSmean Mean of the deterministic FSS computed between all ensemble

member-member pairs, defined in Dey et al. (2014)

Measure of spread of ensemble members; high dFSSmean

shows low spread as all members are similar; ideally

would be equal to eFSSmean

dFSSstd Standard deviation of the deterministic FSS computed between

all ensemble member–member pairs, defined in (Dey

et al. 2014)

Measure of the range of dFSS values; for a fixed dFSSmean,

small dFSSstd suggests rainfall occurs in slightly offset

locations between all members, whereas large dFSSstd
suggests that most ensemble members produce rainfall

in the same location but with a few outlier members

FIG. 13. FSS scores (defined in Table 1) as a function of forecast lead time for 3-h accumulation periods. The gray

shading shows the range of FSS scores for individual ensemble members. FSS is computed for a neighborhood

of n 5 23 (;250 km) for rainfall exceeding the 97th percentile. Different markers correspond to different model

initialization times.
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3) Forecast skill: Neighborhood probabilistic forecasts based

on CP ensemble were shown to be generally more skillful

than those generated from either the global ensemble or

the respective (deterministic) control members. FSS was

found to decrease with percentile threshold and forecast

hour (although showing diurnal signals). However, FSS

values remain quite low compared to similar analysis

performed in the midlatitudes (e.g., Schwartz 2019). CP

ensemble forecasts were proven to be more skillful than

global forecasts also for the 24-h accumulation, which is

the accumulation current weather warnings in East Africa

are based on, although the ensembles were only margin-

ally better than the control members for 24-h accumula-

tions. In terms of useful scale, the ensembles were better

than their respective control members, though this im-

provement was generally not statistically significant. The

CP ensemble has a useful scale 100 km smaller than global

ensemble, which is statistically significant, although a sim-

ilar improvement was found when comparing the CP Det

to global ensemble. ROC areas revealed generally greater

discriminating skill by the CP ensemble forecasts, with

higher differences for greater thresholds (not shown).

4) Probabilistic guidance: The FSS of the deterministic CP

model often exceeded that of the ensemble mean and the

mean FSS of the individual ensemble members (corre-

sponding to postage stamps). However, the probability of

threshold exceedance (CP NEP) was shown to be the

most skillful forecast product, highlighting the value of

the probabilistic information provided by the CP ensem-

ble. Therefore, this is the product that local forecasters

should look at.

A decomposition of the RMSE (see the appendix) indicates

that the RMSE is dominated by the forecast variance for the

CP ensemble, rather than the bias. Therefore, a bias correction

alonemay not be sufficient in leading to amore skillful forecast

and future efforts should therefore focus on the lack of dis-

persion. Underdispersiveness is a well-known issue in the

meteorological community and research is ongoing to improve

this, by understanding the impact of initial, boundary and

physical perturbations, as well as postprocessing techniques

(e.g., time-lagging, Porson et al. (2020) and references therein).

Initial conditions perturbations have a bigger impact in terms

of spread and forecast quality in the first hours of forecast in-

tegration, whereas boundary conditions dominate for longer

lead times over small domains (Vié et al. 2011; Kühnlein et al.

2014; Porson et al. 2020; Dipankar et al. 2020). Boundary

conditions perturbations are provided by the global driving

model. In regard to perturbations of the initial conditions,

there are different ways to generate them (Tennant 2015).

Here, a downscaling approach is used: Kühnlein et al. (2014)

and Tennant (2015) showed a good performance of the

downscaled convective-scale ensemble, especially under con-

ditions of relatively weak synoptic forcing (i.e., convective

rainfall). Arguably, the most appealing way to improve CP

ensemble spread is way to improve the CP ensemble spread is

to improve the spread of the initial conditions of the parent

driving ensemble. Porson et al. (2019), for instance, showed

that that perturbing the sea surface temperatures (SSTs) in the

initial conditions of the parent model generates a higher spread

also in the driven CP ensemble than just having fixed SSTs.

Another way to enhance the ensemble spread is through the

representation of model error in the physics scheme (Bouttier

et al. 2012). Whether changes in the physical perturbations

have a greater impact than changes in the driving model would

depend also on the synoptic forcing (A. Porson 2020, per-

sonal communication).

While this study has focused on the CP ensemble and potential

ways to improve its performance, it has also demonstrated the

FIG. 14. The eFSSmean, dFSSmean, and dFSSstd (defined in Table 1) as a function of forecast lead time for 3-h

accumulation periods (a) 0000–0300 UTC and (b) 1200–1500 UTC. FSS is computed for a neighborhood of n5 23

(;250 km) for rainfall exceeding the 97th percentile. Different markers correspond to different model initializa-

tion times.
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value of CP deterministic forecasts, which outperform the

global ensemble in many ways. Continued evaluation and im-

provement of CP determinstic forecasts will clearly play an

essential role to the forecasting system in East Africa. As ad-

vocated by Woodhams et al. (2018), there continues to be a

need for more in situ observations (ground and upper air),

whose assimilation could increase the CP forecast skill further,

especially in the first hours of integration.

Convection-permitting ensemble simulations are only re-

cently being explored for operational forecasting in the tropics.

While limited to a brief period of only 24 cases, the findings of

this study, should therefore stimulate further investigations in

other tropical regions. Future work should involve verification

over a longer period or larger set of cases to corroborate the

added value by CP ensemble in the tropics. In parallel to the

model development point of view presented above, more de-

tailed probabilistic forecast guidance and advice to forecasters

is essential for successful adoption of CP ensemble for opera-

tional forecasting in the tropics. A future testbed is being

planned in the African SWIFT project to investigate how best

to exploit information from the CP ensemble for operational

forecasting.
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APPENDIX

Bias-Variance Decomposition of the RMSE

In the main text we have calculated the RMSE of the

ensemble mean. Here we apply the bias-variance decom-

position of the mean squared error (MSE) (Kohavi and

Wolpert 1996):

FIG. A1. Bias (solid lines) and variance (dashed lines) decomposition of the mean square

error (MSE) of the ensemblemean of the 3-h rainfall accumulation averaged over the different

subregions. The values on the x axis represent the starting forecast hours for each accumulation

period (e.g., 12 is the 3-h accumulation period between 12 and 15 h). Solid (dashed) black

vertical lines refer to the valid time of 0000 UTC (1200 UTC).
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MSE5 bias2 1 var. (A1)

Results are shown in Fig. A1. First, biases for Glob-ENS are

higher than for the CP-ENS. Also, it can be seen that the

largest contribution to the MSE comes from the bias for the

global ensemble and from the variance for the CP-ENS for

most of the regions.
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