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Abstract: The loss of nitrogen and phosphate fertilizers in agricultural runoff is a global environ-
mental problem, attracting worldwide attention. In the last decades, the constructed wetland has 
been increasingly used for mitigating the loss of nitrogen and phosphate from agricultural runoff, 
while the substrate, plants, and wetland structure design remain far from clearly understood. In 
this paper, the optimum substrates and plant species were identified by reviewing their treatment 
capacity from the related studies. Specifically, the top three suitable substrates are gravel, zeolite, 
and slag. In terms of the plant species, emergent plants are the most widely used in the constructed 
wetlands. Eleocharis dulcis, Typha orientalis, and Scirpus validus are the top three optimum emergent 
plant species. Submerged plants (Hydrilla verticillata, Ceratophyllum demersum, and Vallisneria na-
tans), free-floating plants (Eichhornia crassipes and Lemna minor), and floating-leaved plants (Nym-
phaea tetragona and Trapa bispinosa) are also promoted. Moreover, the site selection methods for con-
structed wetland were put forward. Because the existing research results have not reached an agree-
ment on the controversial issue, more studies are still needed to draw a clear conclusion of effective 
structure design of constructed wetlands. This review has provided some recommendations for 
substrate, plant species, and site selections for the constructed wetlands to reduce nutrients from 
agricultural runoff. 

Keywords: construction wetland; substrates; plants; site selection 
 

1. Nitrogen and Phosphorus in Agricultural Runoff 
Nitrogen (N) and phosphorus (P) are the main pollutants in agricultural runoff, con-

tributing to the diffused pollution. Hazards caused by N and P residues in agricultural 
runoff have posed serious threats to the sustainable development of many countries, par-
ticularly the developing countries [1,2]. Excessive N and P from agricultural runoff can 
pollute the environment [3,4], cause algae bloom [5,6], disturb fisheries and tourism [7–
9], and threaten water safety [10–12]. 

It is very challenging to consistently reduce the use of N and P fertilizers to protect 
the agroecosystems [13,14] because world grain production still largely depends on N and 
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P fertilizers [15,16]. Farmers often overuse fertilizers to pursue high crop yield [17,18]. 
Therefore, fertilizer use has been increasing continuously at a growth rate of around 5% 
per year [19]. However, only 30%–35% of N and 10%–20% of P are absorbed by crops, and 
the majorities are lost along with the agricultural runoff, exacerbating the diffused pollu-
tion [20]. Currently, excessive N and P retention in the aquatic environment has become 
a worldwide environmental problem [21], and it is vital and urgent to find an effective 
solution to mitigate N and P from agricultural runoff. 

Some countries have started to take some measures to limit the total consumption of 
chemical fertilizers to mitigate the environmental damages [22,23], but pollution from 
overuse fertilizers has been a chronic problem [24]. Because of the characteristics of diffu-
sion, N and P in agricultural runoff need to be treated in large areas and specific locations 
[25]. Ecological engineering is one of the main approaches to control agricultural diffused 
pollution, including source control and process weakening [26]. Compared with source 
control, process weakening is a more widely used methodology. Process weakening refers 
to the process of intercepting pollutants and recycling by constructing ecological facilities. 
Constructed wetland is one of the widely used approaches for process weakening. There-
fore, it is of great significance to review comprehensively the documents related to the 
removal of N and P using the constructed wetland. 

The main aims of this review are to (i) identify the optimum substrates and plant 
species of constructed wetland for mitigating N and P from agricultural runoff, (ii) eluci-
date the site selection of constructed wetland based on Geographic Information System 
(GIS) technology, and (iii) sort out the relations of wetland constructional structure and 
the mitigating performances of N and P in agricultural runoff. In addition to the perspec-
tives of economic feasibility, regional suitability, and environmental sustainability, this 
article reviewed the substrates and plant performances, technical methods of site selec-
tion, and structural designs to mitigate N and P from agricultural runoff. The abstract 
picture of the review is shown in Figure 1. 

 
Figure 1. Graphical abstract of constructed wetland mitigating N and P from agricultural runoff. 

2. Optimum Substrates and Plants of Constructed Wetland to Mitigate Nitrogen and 
Phosphorus 

Constructed wetland is an artificial coordinated system composed of substrate, plant, 
microorganism, and soil [27]. In the last decade, it has played an increasingly important 
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role in the treatment of urban domestic sewage, industrial sewage, and agricultural 
wastewater [28–30]. In general, constructed wetlands can be divided into three types—
surface flow, subsurface flow, and vertical flow constructed wetlands [28,31]. Purification 
capacities of different types of constructed wetland vary greatly, especially for the specific 
pollutants. Pollutant removal by the constructed wetland involves several processes, in-
cluding sedimentation, photolysis, hydrolysis, microbial degradation, adsorption, degra-
dation, and plant uptake. However, it is difficult to separate the individual process clearly 
because it is a complex process [32] and also due to its interactions with other pollutants 
[33]. 

In terms of N and P removal, N removal is related to the processes of ammonification, 
nitrification, plant absorption, and ammonia adsorption [34], and P removal is achieved 
through the combination of substrates, plants, and microorganisms [28]. For the ecological 
benefits of constructed wetlands, scholars have conducted many studies, but most studies 
are theoretical studies at the laboratory, posing a shortcoming in the practical application. 

2.1. Substrates’ Identification for Mitigating Nitrogen and Phosphorus from Agricultural Runoff 
Substrate plays an important role in the mitigation of N and P. The commonly used 

substrates are generally divided into three types—natural materials, industrial by-prod-
ucts, and manufactured products. 

Various substrates have been used in the constructed wetlands, including gravel, 
clay, marble, bentonite, limestone, shale, wollastonite, zeolite, sand, calcite, vermiculite, 
dolomite, shell, peat, maerl, activated carbon, compost, ceramsite, lightweight aggregate, 
calcium silicate hydrate, coal cinder, fly ash, slag, hollow brick crumbs, wollastonite tail-
ing, alum sludge, Moleanos limestone, oil palm shell, and others. Table 1 summarizes the 
characteristics, including both advantages and disadvantages, of ever-used substrates. 
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Table 1. Characteristics of substrates used in the constructed wetland. 

Type of substrates Characteristics References 
Natural material  
Gravel Widespread and common; good adsorption; low cost; phosphorus and nitrate removal is not good. [35] 

Clay 
Plentiful and cheap; excellent effect, green environmental protection; high adsorption of organic compounds; low removal rate of COD, 
NH3-N, and TN.  

[36] 

Marble High removal ability of phosphorus and ammonia nitrogen; economic accessibility; susceptible to weathering and dissolution. [37] 
Bentonite Natural adsorbents with strong adsorption capacity; good coordination with the environment. [38] 

Shale 
High removal ability of phosphorus and ammonia; good overall performance; derived from the lower limestone group of the Carbonif-
erous system; high content of acid; higher specific surface area. [39] 

Apatite material Lasting effect on the adoption of P; high economic cost of quality apatite. [40] 

Zeolite 
High displacement ability to target ions; high porosity; high surface ratio; provide the environment for wetland system microorgan-
isms; super to gravel in removing biodegradable-organics and nitrides; environmental damage caused by zeolite mining. 

[41] 

Sand Widely distributed; low adsorption capacity and weak cation exchange capacity. [42] 
Calcite Efficient removal of phosphorus and ammonium nitrogen; inefficient removal of nitrate. [43] 

Vermiculite 
Good adsorption and ion exchange performance; selective adsorption for ammonia nitrogen; high ammonia nitrogen saturation ad-
sorption capacity; low price. 

[44] 

Dolomite 
Composed of calcium carbonate and magnesium carbonate; high phosphorus removal rate; low adsorption capacity and cation ex-
change capacity. 

[45] 

Shell A sea-culture by-product or agriculture by-product; waste reuse; good adsorption capacity of P and N. [46] 

Bauxite 
Excellent source of Al and Fe oxides; strong p-combining ability; high efficient adsorption capacity for toxic metals; high alkalinity 
treated water. [47] 

Rice straw 
Agricultural waste; carbon source removal of nitrogen compounds; low cost; no secondary pollution; availability limited to harvest 
time. 

[48] 

Peat Complex material composition; large amount; strong phosphorus adsorption capacity; lack of research on species. [49] 
Artificial products  
Activated carbon Environmentally friendly; high cost and low adsorbing effect; complex production process. [50] 

Biochar 
Wide source of raw materials; realize recycling; high porosity, high CES, and high surface area ratio; high efficiency of organic matter 
and nutrient removal; emission reduction N2O; high energy consumption of pyrolysis. 

[51] 

Compost Low investment; simple technology; recycling of resources; not environmental-friendly. [52] 

Ceramsite 
Made of coal fly ash, sediment, etc., with drying and heating; high mechanical strength and developed microporous structures; re-
utilization of waste; efficient in N and P removal; high preparation cost. 

[48] 
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Lightweight aggregate Hydraulic performance; light and handy; high cost; low intensity. [53] 
Calcium silicate hy-
drate 

Porous; Large specific surface area; strong surface activity; lightweight; poor compatibility with organic polymers. [54] 

Polyethylene plastic High porosity; no in-depth study. [55] 
Industrial by-product  

Fly ash 
Solid waste discharged from coal-fired boilers such as coal-fired power plants; plentiful and cheap; large specific surface area; high 
activation energy, abundant pore structure, and strong adsorption; not environmental-friendly. 

[56] 

Slag 
Made from smelting industry waste; low cost; abundant raw material; recycling waste; high P adsorption capacity of arc furnace steel 
slag; different physicochemical properties of different slags. 

[57] 

Hollow brick crumbs Active nitrogen and phosphorus adsorb abilities; construction waste; utilization of waste. [50] 
Wollastonite tailing Efficient phosphorus removal; general adsorbability.  [58] 

Alum sludge 
A waste of waterworks; abundant; waste reuse; high transportation cost; high efficiency of phosphorus removal; low efficiency of nitro-
gen removal. 

[59] 

Moleanos limestone Low cost and good usability; good performance in phosphorus removal. [60] 

Wood mulch 
By-products of wood industry; waste reuse; abundant; 
Organic carbon source of heterotrophic denitrification; 
Strong ability to remove nitrogen compounds; no practical application. 

[61] 

Anthracite High-density coal; long-lasting and efficient phosphorus removal effect; mining anthracite destroying the environment. [62] 

Calcite 
Crushed stone and brick mixed; good for the growth of plants and microorganisms; ability to absorb phosphorus; facilitate microor-
ganisms and plant growth; effective in P adsorption. 

[63]  

PHBV and PLA blend A polymer biodegraded by microorganisms; improving nitrogen removal ability as a carbon source. [64] 
Red mud A waste of aluminum industry; abundant; cheap; reuses waste; strong alkalinity; having ability to remove phosphorus. [65] 
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For the selection of substrates used in the constructed wetland, cost and availability 
of raw materials should be given priority, especially in economically deprived areas [66]. 
Considering the cost and availability of raw materials, gravel, bentonite, shale, zeolite, 
sand, shell, rice straw, fly ash, hollow brick crumbs, and slag are suitable for mitigating N 
and P in agricultural runoff. To select the substrates with low cost and wide availability, 
the N and P removal capacities of 10 substrates were reviewed in detail. 

Gravel is a commonly used filler substrate, with physical adsorption to achieve pol-
lutant removal [67]. By artificial aeration, the constructed wetland with gravel can remove 
58% of total nitrogen (TN) [67]. As a wetland substrate, bentonite can remove 66% of total 
phosphorus (TP) [68], showing good application prospects. In two constructed wetlands 
with shale as substrate and reed as plant, around 98%–100% of P was removed in 10-
month cycling time [69]. In the constructed wetland with reeds as the plant, ammonia–
nitrogen was removed nearly entirely; in the constructed wetland without reeds, the re-
moval rate was only 40%–75% [69]. The zeolite, a natural ore, has a large adsorption rate 
for N and P due to its internal composition and spatial structure [70]. Specifically, zeolite-
filters can enhance the removal ability of constructed wetland, with the removal percent-
ages of organic matter, N and P being 95%, 80%, and 70%, respectively [71]. When the 
zeolite was used as the hybrid substrate, the removal rate of TN reached 80.3%–92.1% [72]. 
In constructed wetland with tall sheep grass as the plant, sand-soil was better than coarse 
sand soil in removing N [73]. In the wetland with sand as substrate, the removal capacity 
of P was 42%~91% [74]. Shells from both aquaculture and agriculture were proved to be 
effective removal of N and P [46]. For instance, palm kernel shells were effective in im-
proving the N removal efficiency in constructed wetlands, compared with the counterpart 
with sand as the substrate [75]. Rice straw is also an effective material to remove nitroge-
nous compounds. In the floating constructed wetlands with rice straw as the substrate, 
the average removal rates of TN, ammonium nitrogen (NH4+-N), and nitrate–nitrogen 
(NO3−-N) were 78.2%, 81.2%, 62.1%, respectively [48]. Hollow brick crumbs and fly ash 
are also superior in the removal of TN and TP. The constructed wetland with hollow brick 
crumbs mixed with fly ash can cut down 89% of NH4+-N and 81% of TP [28,76]. Slag was 
effective for the treatment of wastewater in constructed wetlands, and the removal rate of 
P was maintained at a high level [57,77,78]. Slag was 20% higher than gravel in respect of 
adsorption capacity of TP and the experiments witnessed a quick absorption saturation of 
TP by slag. A two-year experiment indicates similar N removal rates for slag and gravel 
[79]. 

The above review indicates that some substrates have been examined in the field, 
while others remain theoretical tests in the laboratory. The combination of substrates can 
enhance the removal performance of N and P. Considering the removal performance, 
availability, cost, toxicity, and recyclability [80], the top three optimum substrates for mit-
igating N and P from agricultural runoff are gravel, zeolite and, slag (including coal slag). 

2.2. Plants Identification for Mitigating Nitrogen and Phosphorus from Agricultural Runoff 
The plants commonly used in constructed wetlands can be divided into emergent 

plants, submerged plants, and free-floating plants [28]. More than 150 kinds of macro-
phytes have been used in constructed wetlands, but a systematic study in the field is still 
lacking [81]. Emergent plants have been identified as the most widely used plants in con-
structed wetlands [81] to treat agricultural runoff [82]. The plant species in wetlands play 
an important role in purifying agricultural runoff, which has been investigated in many 
countries, including China, Australia, Finland, Ireland, Italy, Korea, Norway, Singapore, 
Poland, Spain, Sweden, Ukraine, UK, and the USA (Table 2). 
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Table 2. Constructed wetland plants for the purification of N and P from agricultural runoff. 

Vegetation Country References 
Phragmites sp. (australis) Australia, China, Poland, Spain, UK, Ukraine, France, Slovenia [83–88] 
Phragmites sp. (japonica) Korea [89] 
Phragmites sp. (karka） Singapore [90] 
Scirpus sp. (californicus) USA [91] 
Scirpus sp. (bulrush) USA [91] 
Scirpus sp. (validus) Australia [84] 
Scirpus sp. (sylvaticus) Finland  [92] 
Scirpus sp. (mucronatus) Singapore  [90] 
Typha sp. (latifolia) Finland, Norway, Poland, Sweden, UK, USA, France [86–88,92–95] 
Typha domingensis USA [91] 
Typha sp. (Cattail) USA [91] 
Typha sp. (angustifolia) Singapore, Korea [89,90] 
Iris sp. (pseudacorus) Finland, Norway, UK [88,92,93] 
Phalaris sp. (arundinaces) Finland, Norway [92,93] 
Alisma sp. (plantago-aquatica) Finland [92] 
Filipendula sp. (ulmaria) Finland [92] 
Juncus sp. (conglomeratus) Finland [92] 
Carex sp. (riparia) UK [88] 
Juncus sp. (effuses) Korea [89] 
Miscanthus sp. (sinensis) Korea [89] 
Eleocharis sp. (dulcis) Singapore  [90] 
Lepironia sp. (articulate) Singapore  [90] 
Sparganium sp. (erectum) Norway, UK [88,93] 
Zizania sp. (caduciflora) China, Korea [85,89] 
Glyceria maxima Poland [87] 
Typha orientalis China, Korea [85,89] 
Cyperus malaccensis China [85] 
Juncus effusus Korea [89] 

Table 2 indicates that Typha spp., Phragmites spp. and Scirpus spp. are the most fre-
quently used plants in the purification of agricultural runoff. Similarly, Vymazal et al. [96] 
found that Phragmites spp. (Poaceae), Scirpus spp. (Cyperaceae), Typha spp. (Typhaceae), Jun-
cus spp. (Juncaceae), Iris spp. (Iridaceae), and Eleocharis spp. (Spikerush) are the most com-
monly used emergent plants in constructed wetlands. Compared with submerged plants 
and floating plants, emergent plants are more frequently used in constructed wetlands 
[81]. Hence, priority was given to the review of emergent plants for mitigating N and P in 
constructed wetlands. 

The wetland planted with Phragmites australis can remove 60.74% TN, 93.07% NH4-
N, and 47.76% TP in an overall hydraulic residence time of four months [97]. Wetlands 
planted with Phragmites sp. and Typha sp. can remove TN by 79% and 77%, PO4-P by 21% 
and 14%, within the overall hydraulic residence periods of 21 h and 27 h, respectively [98]. 
Similarly, Typha angustifolia was investigated in a pilot-scale constructed wetland, remov-
ing 80% NH4+-N and 40% NO3−-N [99]. In the wetland planted with Typha orientalis, the 
TN, NH4-N, and TP removal efficiencies were 60.94%, 88.27%, and 63.21%, respectively, 
in an overall hydraulic residence time of four months [97]. Comparatively, the NO3−-N, 
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NH4+-N, and P removal efficiencies of Scirpus grossus and Typha angustifolia were 52.1%, 
59.4%, and 11.2%, and 51.6%, 56.5%, and 9.1%, respectively [100]. The wetland planted 
with Scirpus mucronatus witnessed the obvious reductions of TN (66.86%), NH4-N 
(89.35%), and TP (66.53%) in an overall hydraulic residence time of four months [97]. Sim-
ilarly, remediation efficiency of Juncus effuses was examined, showing that Juncus plants 
fixed N and P around 28.5 g/m2 and 1.69 g/m2 [101]. Moreover, storm-water experienced 
a constant decline in TN (15.7%) and TP (47.7%) after 13 months of reaction in Juncus ef-
fuses planted wetlands [102]. Wetlands planted with Iris pseudacorus testified drops of TN, 
NH4-N, and TP by 39.47%, 84.65%, and 26.28%, respectively, after an overall hydraulic 
residence time of four months [97]. Likewise, Eleocharis dulcis also showed the removal of 
TN and TP by 64.4% and 24.4%, respectively [103]. Apart from the most common emer-
gent plants reviewed above, researchers also recommended Eleocharis dulcis, Typha an-
gustifolia, and Scirpus mucronatus as the optimum plant species in surface flow wetlands 
[103]. 

In addition to single plant species, the combination of different plant species, sub-
strate, climate, and management of constructed wetland all can affect the performance of 
N and P removals [104]. For example, the combination of Typha spp. with Phragmites spp. 
witnessed a gradual increase in the removal efficiency of nutrients such as N and P in 
constructed wetlands, which confirms the enhanced purification capacity by the com-
bined plants [105]. The combination of plants with substrates can also improve the re-
moval efficiency. Iris pseudacorus planted wetlands with fine gravel removed 49.4% TN 
and those with coarse gravel removed 31.4% TN, while unplanted wetlands were less 
(43.4% and 26.8%) [106]. 

Some researchers have compared the removal efficiencies of N and P between differ-
ent species in the same conditions. For example, Sim et al. [103] ranked four common 
emergent plant species on the P removal (Eleocharis dulcis > Scirpus mucronatus > Typha 
angustifolia > Phragmites karka) and TN removal (Eleocharis dulcis > Typha angustifolia > Scir-
pus mucronatus > Phragmites karka). In addition, Wu et al. [97] compared the removal effi-
ciencies of TN, NH4+-N, and TP by Typha orientalis, Iris pseudacorus, Phragmites australis, 
and Scirpus validus. The four plants demonstrated the order of TP removal abilities (Typha 
orientalis > Scirpus validus > Phragmites australis > Iris pseudacorus). 

By reviewing the above comparative studies, these commonly used emergent plants 
can be ranked on the mitigation of N and P in the following order: Eleocharis dulcis > Typha 
orientalis > Scirpus validus > Phragmites australis > Iris pseudacorus. 

Compared with emergent plants, submerged plants and floating plants are less 
prominent in the constructed wetland. Among the submerged plants, Ceratophyllum de-
mersum, Hydrilla verticillata, Myriophyllum verticillatum, Vallisneria natans, and Potamogeton 
crispus are commonly used in constructed wetland [28]. Ceratophyllum demersum played 
an important role in the removal of TN and TP, with 27.5% and 86.19%, respectively [107]. 
Hydrilla verticillata dominated constructed wetland experienced a fall in TP concentration 
from 126 μg/L to 106 μg/L [108]. Myriophyllum verticillatum, a plant in surface flow con-
structed wetlands, displayed the outstanding removal ability of TP by roughly 70.1% [77]. 
Potamogeton Crispus with Hydrilla verticillata in the wetland can remove organic N and 
organic P by 81.28% and 83.54%, respectively [109]. Despite no study stating clearly the 
purification capacity of Vallisneria natans, it was verified that P absorption by Vallisneria 
natans can be promoted by organic acids [110]. Some studies have compared the N and P 
removal performance of different submerged plants in the same conditions. The highest 
removal efficiency of N and P occurred in Hydrilla verticillata, followed by Ceratophyllum 
demersum, Vallisneria natans, Myriophyllum spicatum, and Potamogeton maackianus, in labor-
atory simulated hydrostatic conditions [111]. Therefore, the top optimum three sub-
merged plants in the constructed wetland are Hydrilla verticillata, Ceratophyllum demersum, 
and Vallisneria natans. 

Different from emergent plant and submerged plants, floating plants are divided into 
free-floating species and floating-leaved species. The commonly used free-floating plants 
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in constructed wetlands include Lemna minor, Eichhornia crassipes, Salvinia natans, and Hy-
rocharis dubia. Meanwhile, floating-leaved species in constructed wetlands are mainly 
Nymphoides peltata, Trapa bispinosa, Nymphaea tetragona, and Marsilea quadrifolia [28]. 

Applying Lemna minor in constructed wetlands, the removal rates of TN and TP ex-
ceeded 50% and 90% [112]. Moreover, Najas minor’s removal efficiencies on TN and TP 
were 55% and 93% [113]. Eichhornia crassipes and Salvinia natans used for the wastewater 
treatment can remove 53.0% TN and 56.6% TP [114]. A 100-day reaction indicated that 
Eichhornia crassipe removed 57% TN and 52% TP, while Hydrocharis dubia eliminated less 
(46% TN and 45% TP) [115]. Moreover, Nymphaea tetragona [116], Trapa bispinosa, and Mar-
silea quadrifolia were used as constructed wetland plants to remove N and P [117]. Some 
scholars have compared the removal performances of floating plants. For the free-floating 
plants, the highest N and P removal performances occurred in Eichhornia, followed by 
Lemna, Salvinia [118]. Eichhornia is also far superior to Hydrocharis dubia in the view of re-
moving N and P [119]. For the floating-leaved plants, Greenway [120] ranked the plants 
on the N and P removal (Lemna minor > Nymphaea tetragona > Nymphoides peltate). Moreo-
ver, Marion and Paillisson [121] sorted three species on the N and P removal performance 
in the order: Nymphaea tetragona > Trapa bispinosa > Nymphoides peltata. 

Based on the above comparative studies, it can be drawn that Eichhornia crassipes and 
Lemna minor are the optimum free-floating plants, and Nymphaea tetragona and Trapa bispi-
nosa are the optimum floating-leaved plants for mitigating N and P from agricultural run-
off. 

Among the aquatic plants mentioned above, emergent plants are most widely used 
in constructed wetlands [81]. Phragmites spp. is the most frequent species in Asia and Eu-
rope [82]. Scirpus spp., including lacustris, validus, and californicus, are commonly used in 
North America, New Zealand, and Australia [28]. Juncus and Eleocharis spp. are utilized 
commonly in Europe, North America, and Asia [82]. Iris spp. is mainly used in tropical 
and subtropical regions [122]. 

Overall, to mitigate N and P in the agricultural runoff by constructed wetland, in 
terms of emergent plants, Eleocharis dulcis, Typha orientalis, and Scirpus validus are the top 
three optimum species; as regards to submerged plants, Hydrilla verticillata, Ceratophyllum 
demersum, and Vallisneria natans are advocated; for the free-floating plants, Eichhornia cras-
sipes, and Lemna minor are appropriate; and regarding the floating-leaved plants, Nym-
phaea tetragona and Trapa bispinosa are the promoted species. 

3. Site Selection of Constructed Wetland to Mitigate Nitrogen and Phosphorus in Ag-
ricultural Runoff 

During the process of selecting sites for constructed wetlands, multiple factors 
should be considered comprehensively, completely, and correctly [123]. From the per-
spective of practical operation, a series of maps containing the topographic map, geologi-
cal map, aerial image map, soil survey map, and hydrological map should be compiled 
for the comprehensive selection of wetland sites [124]. Many studies have demonstrated 
the importance of climate, rainfall, geography, surface water, soil, biology, and socio-eco-
nomic factors [125–127]. 

Natural factors play an important role in the site selection of constructed wetland, 
especially the elemental items—(i) closing to pollution sources as possible as it can, (ii) 
minimizing earthwork by maximizing natural slope, and (iii) estimating watershed area 
to control wastewater retention time. Apart from natural factors, the protection of human 
and natural resources is an assignable part, requiring keeping away from nature reserves, 
historical and cultural reserves, archaeological control areas, planned and construction 
areas, and others. The Geographic Information System (GIS) is one of the important tech-
nologies for geographic exploration, which has been widely used in land administration, 
traffic planning, environmental analysis, and planning [128]. At present, it has been in-
creasingly used in the site selection of public service facilities such as hospitals and 
schools. Furthermore, GIS combined with remote sensing (RS) has been used to map the 
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isolated wetlands in a karst landscape [129]. Moreover, GIS has been used for site evalua-
tion of constructed wetlands and restored wetlands in the agricultural catchment [130]. 
Combining the existing research and the characteristics of constructed wetlands, this pa-
per reviewed and sorted out the technical method using GIS for the site selection of con-
structed wetlands to mitigate N and P from agricultural runoff (Figure 2). 

 
Figure 2. Technical route of constructed wetland site selection using Geographical Information 
System (GIS). 

4. Structural Design of Constructed Wetland to Mitigate Nitrogen and Phosphorus in 
Agricultural Runoff 

The design parameters of constructed wetlands consist of wetland substrate, plants, 
water depth, aspect ratios, and others [131]. These substantial factors are possibly ex-
pressed in various forms, for instance, water depth, hydraulic load and retention time, 
and feeding mode of the inlet [132]. 

Fillers play a key role in the construction of wetlands. Various substrates have been 
elaborated in Section 2.1. When the substrate species were selected, attention will be paid 
to the particle size of the filler, which has a significant effect on the removal efficiency 
[133]. The comparison of four types of wetland beds with different particle sizes in the 
same environmental conditions indicates that the smaller the particle size, the better the 
P removal efficiency [134]. Specifically, the maximum P adsorption capacities of three fil-
ter media with the sizes of 4–10 mm, 2–4 mm, 0.1–2 mm were 7.7 mg/kg, 11.6 mg/kg, and 
22.5 mg/kg, respectively, indicating that the adsorption capacity increased with the de-
crease of media sizes [135]. 

In addition to particle size, the substrates with additives, for example, iron oxides, 
iron hydroxides, Lu oxides, Lu hydroxides, and calcium, can increase the P removal effi-
ciency of constructed wetlands [135–137]. The comparison of adding Ca, Mg, Al, and Fe 
to a filter medium indicated that Ca had the maximum enhancement of nutrient removal 
[135]. Similarly, a study on the oyster shell as the additive indicated that adding 2% of 
oyster shell could increase the adsorption capacity of P from 23 mg/kg to 36 mg/kg, and 
adsorption capacity rose until the oyster shell concentration came over 60% [135]. 

Plants are an important part of constructed wetlands, and different species have been 
reviewed in Section 2.2. Notably, priority should be given to local plants to prevent the 
invasion of alien species [138]. 

Water depth is an important factor affecting the water load and oxygen permeability 
[139]. A comparison in the denitrification effects of subsurface flow horizontal wetlands 
between depths of 0.27 m and 0.50 m indicated that the wetlands at depth of 0.27 m 
worked better than those of 0.50 m [140]. 
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In addition, the ratio of length to width of wetland bed can affect the removal of N 
and P [141]. The ratio can affect the linear velocity of water flow, causing head loss [142]. 
Therefore, the ratio should not be too large. On the other hand, some scholars suggest that 
the ratio of length to width had a limited effect on N and P removal [140]. However, the 
existing research related to the ratio of length to width has not yet reached an agreement. 
Therefore, the impact of the length-width ratio of constructed wetland on its performance 
is far from clearly understood and further study is still necessary. 

5. Concluding Remarks and Future Outlooks 
Constructed wetland plays an irreplaceable role in the mitigation of N and P, espe-

cially in the economically deprived areas. Despite many studies on the related topics of 
constructed wetland, most of the studies only focused on the interaction of a certain sub-
stance with the performance of constructed wetland under artificially designed experi-
mental conditions, suggesting the limited practical application of the findings. This review 
summarized the principles, influencing factors, site selection, and structural design of con-
structed wetlands in the treatment of N and P from agricultural runoff, which has a strong 
application. 

This review suggests that the top three recommended substrates for mitigating N and 
P from agricultural runoff are gravel, zeolite, and slag (including coal slag). Emergent 
plants are the most widely used plants in constructed wetlands, and Eleocharis dulcis, 
Typha orientalis, and Scirpus validus have better performance in mitigating N and P from 
agricultural runoff. Similarly, Hydrilla verticillata, Ceratophyllum demersum, and Vallisneria 
natans are the recommended submerged plants; Eichhornia crassipes and Lemna minor are 
the advocated free-floating plants; and Nymphaea tetragona and Trapa bispinosa are the pro-
moted floating-leaved plants. Moreover, the selection of wetland site was summarized, 
and the technical route of site selection using GIS was put forward. However, the optimal 
structure design of constructed wetland has not been obtained, due to the lack of system-
atic research on the wetland structure design. 

Despite the progress of the studies on the constructed wetlands, research gaps still 
exist in our understanding of constructed wetlands for mitigating N and P in agricultural 
runoff. In addition, climate change will further influence the N and P diffusion pollution 
from agricultural runoff [143]. To fill these research gaps, the following issues deserve 
more attention: 
(1) It is important to conduct more comparative studies on substrates’ performance un-

der the same external conditions in different climatic regions. 
(2) The current plant selection focused on the effects of plant species on the mitigation 

of N and P, ignoring the complexity of plants’ contribution to the performance con-
structed wetland. It is essential to study the competitive effects between different 
plant species and the interactions between plants and substrates. 

(3) Because the relationship between constructed wetland structure and performance is 
still debated, more studies on the effect of wetland structure on its performance of 
removing N and P are largely needed. 
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