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Abstract 39 

This paper reviews existing on-farm GHG accounting models for dairy cattle systems 40 

and their ability to capture the effect of dietary strategies in GHG abatement. The 41 

focus is on methane (CH4) emissions from enteric and manure (animal excreta) 42 

sources and nitrous oxide (N2O) emissions from animal excreta. We identified three 43 

generic modelling approaches, based on the degree to which models capture diet-44 

related characteristics: from ‘none’ (Type 1) to ‘some’ by combining key diet 45 

parameters with emission factors (EF) (Type 2) to ‘many’ by using process-based 46 

modelling (Type 3). Most of the selected on-farm GHG models have adopted a Type 47 

2 approach, but a few hybrid Type 2 / Type 3 approaches have been developed 48 

recently that combine empirical modelling (through the use of CH4 and/or N2O 49 

emission factors; EF) and process-based modelling (mostly through rumen and 50 

whole tract fermentation and digestion). Empirical models comprising key dietary 51 

inputs (i.e., dry matter intake and organic matter digestibility) can predict CH4 and 52 

N2O emissions with reasonable accuracy. However, the impact of GHG mitigation 53 

strategies often needs to be assessed in a more integrated way, and Type 1 and 54 

Type 2 models frequently lack the biological foundation to do this. Only Type 3 55 

models represent underlying mechanisms such as ruminal and total-tract digestive 56 

processes and excreta composition that can capture dietary effects on GHG 57 

emissions in a more biological manner. Overall, the better a model can simulate 58 

rumen function, the greater the opportunity to include diet characteristics in addition 59 

to commonly used variables, and thus the greater the opportunity to capture dietary 60 

mitigation strategies. The value of capturing the effect of additional animal feed 61 

characteristics on the prediction of on-farm GHG emissions needs to be carefully 62 
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balanced against gains in accuracy, the need for additional input and activity data, 63 

and the variability encountered on-farm.  64 

Keywords: Dairy farm system, Diet, Feeding management, Effluent, Methane, 65 

Nitrous oxide.  66 
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1. Introduction 81 

In recent years, there has been an increasing focus on evaluating the environmental 82 

effects of livestock production systems, including their impact on greenhouse gas 83 

(GHG) emissions. Although debate remains on the precise contribution of ruminant 84 

livestock to anthropogenic methane (CH4) (Hristov et al., 2018), the role of livestock 85 

agriculture as a main contributor to GHG emissions and climate change is 86 

undisputed. Climate change and its consequences are currently recognised as one 87 

of the major environmental challenges, and the need for GHG mitigation to meet 88 

local expectations and international environmental obligations has been globally 89 

recognised (Smith et al., 2007). Therefore, it becomes increasingly important to have 90 

an enhanced ability to predict on-farm GHG emissions from livestock and assess 91 

methods and efficacy of practices to reduce or offset them.  92 

In livestock agriculture, interactions and variability of critical environmental and 93 

managerial drivers of GHG emissions contribute to the complexity of extrapolating 94 

observed GHG data to a broader range of conditions and scales. Simulation models 95 

of on-farm greenhouse gas (GHG) emissions have an important role to play in 96 

helping us understand the potential impact of GHG mitigation strategies on farm 97 

dynamics, and in using results from experimental measurements of GHG emissions 98 

to assess wider implications and potential trade-offs for the system. Models also 99 

enable extrapolation of GHG emissions from smaller (i.e., emissions from a site, plot, 100 

field, a manure storage facility or from a cow) to larger scales (farm, catchment, 101 

region or country) (Schils et al., 2012). In addition to scale, models can also vary 102 

depending on the GHG of interest, with some simulating a single GHG (Blaxter and 103 
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Clapperton, 1965; Wilkerson et al., 1995; Benchaar et al., 2001), while other models 104 

include all major agricultural GHG (Wheeler et al., 2008; Hillier et al., 2011).  105 

Given the broad range of GHG accounting tools, the complexity of the issue at hand 106 

and the increasing need for accounting of on-farm GHG emissions to meet national 107 

or global obligations, there is uncertainty amongst agricultural stakeholders as to 108 

which tools (calculators, models, modules) are most appropriate to predict GHG 109 

emissions from ruminant systems. The amount of GHG produced within a production 110 

system needs to be quantified accurately to allow for alternatives to be explored and 111 

emissions to be mitigated (Ellis et al., 2010; Benaouda et al., 2019). In addition to the 112 

inherent temporal and spatial variability in emissions, the relative advantages and 113 

disadvantages of these tools remain to be fully assessed, especially in light of the 114 

difficulty in comparing results obtained from different accounting tools, as these vary 115 

in conceptual approaches, reporting units and scope.  116 

Feed management decisions are essential for ruminant production systems, as they 117 

impact directly on substrate availability for enteric microbial fermentation and 118 

digestion, nutritive value, and ruminant excreta composition. In turn, these processes 119 

have a strong influence on the amount and profile of agricultural GHG emissions 120 

(Henderson et al., 2015). Major sources of GHG emissions from livestock agriculture 121 

include methane (CH4) emissions from enteric fermentation and stored manure, and 122 

nitrous oxide (N2O) emissions from animal excreta. Accordingly, there is an 123 

increasing interest in the use of nutrition and feeding management strategies to 124 

reduce GHG emissions. A range of nutritional and feeding management options for 125 

CH4 abatement (Beauchemin et al., 2008; Martin et al., 2010; Caro et al., 2016; 126 

Pellerin et al., 2017) and N2O abatement (de Klein and Eckard, 2008; Monaghan and 127 
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de Klein, 2014) have been described. Examples of nutrition strategies that have 128 

shown promising results in mitigating GHG emissions include increasing grain levels 129 

(i.e., greater concentration of degradable starch and soluble carbohydrates in the 130 

diet), inclusion of lipids and dietary tannins, reducing dietary crude protein, improving 131 

feed digestibility and altering the stage of maturity of harvested forages.  132 

In 2017, a three-year project commenced to bring together the current knowledge on 133 

the effect of feed and dietary management on GHG emissions: Capturing the Effects 134 

of Diet on Emissions from Ruminant Systems (CEDERS; 135 

https://www.eragas.eu/en/eragas/Research-projects/CEDERS-1.htm). The main goal 136 

of the project was to examine dietary effects on on-farm GHG emissions and their 137 

trade-offs, both at the farm and national scales, with the overall aim of supporting 138 

GHG mitigation research and aligning national agricultural GHG inventory research 139 

across a consortium of ten countries (Chile, Denmark, Finland, France, Germany, 140 

Ireland, Netherlands, New Zealand, Sweden and United Kingdom). Our review is 141 

part of this project with the specific objectives to a) identify the most common on-142 

farm GHG accounting tools used by the participant countries, and once identified, b) 143 

explore the livestock GHG accounting approach used by these tools, and c) explore 144 

the potential benefits of adding diet characteristics to on-farm GHG accounting tools 145 

for dairy systems. The focus is on CH4 emissions from enteric fermentation and 146 

manure (animal excreta) and N2O emissions from animal excreta as on-farm GHG 147 

sources.  148 

2. Modelling GHG emissions from ruminant enterprises 149 

Methane and N2O are colourless and odourless GHG that are 28 and 265 times 150 

more potent (100-year horizon) than CO2 at warming the earth (Myhre et al., 2013). 151 

https://www.eragas.eu/en/eragas/Research-projects/CEDERS-1.htm
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Enteric and manure CH4 emissions from ruminants, and N2O emissions from animal 152 

excreta are the main GHG from livestock agriculture. The contribution of CO2 153 

emissions from energy sources and input use are frequently added to GHG budgets, 154 

often using a life cycle assessment (LCA) approach. Many mathematical models 155 

have been developed to predict these major on-farm GHG. 156 

With a focus on the two main GHG from animal livestock systems (CH4 and N2O), 157 

different types of models have been developed to predict emissions of these gases. 158 

These models vary in the level of detail they capture and range from relatively simple 159 

empirical (or statistical) models to more detailed empirical and process-based  160 

mechanistic models (herein, mathematical representations of the several underlying 161 

processes that characterise the function and integration of biology leading to GHG 162 

emissions). The ability to assess the impact of dietary mitigation strategies relies on 163 

accurate estimations of enteric and manure CH4 emissions and N2O emissions. 164 

Estimates of enteric CH4 emissions are often based on dry matter intake (DMI) 165 

and/or the chemical composition or other characteristics of the diet (e.g., organic 166 

matter digestibility and fibre concentration), and/or certain characteristics of the 167 

animal, such as body weight (BW) or animal product (milk or meat) (Wilkerson et al., 168 

1995). Estimates of N2O emissions are often based on animal excreta, manure 169 

storage and processing, nitrogen (N) fertiliser and soil conditions that favour 170 

denitrification (Brown et al., 2001; de Klein and Ledgard, 2005).  171 

Although such equations and predictors provide an estimate of emissions from the 172 

animal and animal excreta (CH4 and N2O emissions) and from soil conditions (N2O 173 

emissions), these equations are sometimes used in isolation. The variation due to 174 

diet types, feeding management and source (e.g., imported vs. on-farm feed) and 175 
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the extent to which polluting end points are affected (e.g., N in freshwater bodies), 176 

are harder to capture, and as a consequence, these equations can still be poor 177 

predictors of GHG emissions at a specific farm scale. At the dairy farm scale, a 178 

greater complexity with integrated components such as livestock, manure 179 

management, housing conditions (barn or on pasture), soil management, and 180 

pasture and fodder crop production need to be incorporated in the modelling (Ellis et 181 

al., 2010). 182 

3. Models of on-farm GHG emissions 183 

In addition to models used for GHG inventories (e.g., Ministry for Primary Industries, 184 

2019) and those used for carbon cycle assessments (e.g., Cowie et al., 2012), Denef 185 

et al. (2012) classified GHG tools into four major categories: calculators, protocols, 186 

guidelines and models. The focus of this review is on on-farm calculators and farm-187 

scale models (herein on-farm GHG models) that have been either developed to aid 188 

in the representation of enteric fermentation (the prevalent source of GHG from 189 

ruminant systems), or that aim to quantify GHG emissions from ruminants (or 190 

improve prediction capacity), under varying animal nutrition conditions.  191 

To date, a large number of on-farm GHG models have been developed for use by 192 

farmers, farm consultants, environmental authorities and the scientific community. 193 

On-farm GHG models can help with i) estimating total emissions for accounting 194 

purposes, raising awareness, ii) identifying, developing and encouraging adoption of 195 

mitigation strategies, iii) identifying knowledge gaps, and creating and exploring 196 

current and alternative scenarios, and iv) scaling-up information, and making future 197 

projections and policy development (Smith et al., 2007; Colomb et al., 2012; Milne et 198 

al., 2013).  199 
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On-farm GHG models offer a broad diversity of scope (i.e., from single GHG to 200 

integral assessment of all three major GHG), modelling approach adopted (i.e., from 201 

simple empirical approaches to more complex dynamic or process-based models), 202 

scale (i.e., from the rumen, soil plot and manure scale to global scale) and emissions 203 

source (i.e., horticulture, grazing and livestock, grasslands, orchards, forestry, and 204 

other land uses) (Hall et al., 2010; Schils et al., 2012). Although models tend to be 205 

characterised as being empirical or mechanistic, often both approaches are followed 206 

for different components within a single model. In general, farm-scale models tend to 207 

follow hybrid or empirical approaches at wider scopes and at various scales to 208 

integrate soil, crop and livestock components into a farm framework (Schils et al., 209 

2012).  210 

The degree to which diet ingredients and diet chemical composition are captured in 211 

on-farm GHG models varies considerably. The first step at the animal level of most 212 

on-farm models is to estimate daily DMI per animal, derived from estimated animal 213 

energy requirements (often based on BW, maintenance needs, tissue growth, milk 214 

production, pregnancy, and activity) divided by the energy concentration of the feed. 215 

The gross energy (GE; in megajoules MJ) concentration of a feed can be calculated 216 

based on crude protein (CP), ether extract (EE), neutral detergent fibre (NDF) and 217 

non-fibre carbohydrate (NFC) concentrations. The major component of 218 

metabolisable energy (ME) or net energy (NE) of a feed is digestible energy (DE). 219 

The DE value of a feed can be estimated from organic matter digestibility (OMD), or 220 

from feed chemical composition (from similar components as used for calculation of 221 

GE) and corresponding digestibility coefficients published in feed tables for individual 222 

ingredients (Beyer et al., 2003; Blok and Spek, 2016; Rinne et al., 2017). Feed DE 223 

can also be estimated using prediction equations (NRC, 2001) or be based on a 224 



11 
 

combination of chemical composition data and prediction equations (Fox et al., 225 

2004). These DE or OMD values are often used to calculate total faecal OM output 226 

or volatile solids (VS), which are the source of manure CH4 emissions. However, 227 

some more advanced models predict DE, OMD, VS and N digestibility (ND) 228 

mechanistically (Illius and Gordon, 1991; Bannink et al., 2018, 2020).  229 

The second step of the animal level model comprises the calculation of a CH4 230 

conversion factor (MCF or Ym), which can involve a) multiplying DMI or GE intake 231 

(GEI) with a fixed conversion factor [e.g., MCF (% of GE) = 6.5 ± 1.0% of GEI (IPCC, 232 

2006)], b) the use of a generic equation, that might include dietary ingredients (e.g., 233 

forage and concentrate), chemical composition parameters (e.g., EE, NDF, starch) 234 

and digestibility parameters (e.g., OMD) (Nielsen et al., 2013; Jaurena et al., 2015; 235 

Eugène et al., 2019), or c) the use of a dynamic and mechanistic model with 236 

representation of rumen fermentation and gastrointestinal digestion (Bannink et al., 237 

2011; Beukes et al., 2011; Huhtanen et al., 2015). Input parameters for these 238 

dynamic, mechanistic models include DMI, diet chemical composition and ruminal 239 

and total tract digestive parameters (Table 1). In these models, rumen H2 formation 240 

is derived from fermented amounts of substrate and associated volatile fatty acid 241 

(VFA) stoichiometry (e.g., Bannink et al., 2011; Huhtanen et al., 2015). 242 

The third and final step in capturing dietary effects in on-farm GHG models is an 243 

estimation of CH4 and N2O emissions from manure storage, land application of 244 

manure and direct deposition of faeces and urine by grazing animals. Both CH4 and 245 

N2O emissions from manures are not only influenced by diet characteristics but also 246 

by biotic and abiotic factors such as manure storage, soil and climatic conditions. 247 

Here we focus on the influence of diet. Manure CH4 emissions are strongly linked to 248 
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the VS content of the manure and as mentioned above this is often estimated from 249 

DE or OMD values. Nitrous oxide emissions are calculated from the amount of N 250 

excreted as faeces and urine multiplied by an emission factor (IPCC, 2006). Nitrogen 251 

excretion estimates require information on DMI per animal and CP or N 252 

concentration of the diet (IPCC, 2006) (Figure 1), where the N concentration of the 253 

diet also influences partitioning of excreta N into faeces and urine (IPCC, 2019). 254 

Excretion estimates can be refined further by accounting for improved estimates of 255 

apparent faecal ND. Nitrous oxide emission factors will differ according to the 256 

method of manure management and, for excreta, the livestock type (e.g., cattle vs. 257 

sheep) and form of excreta (faeces vs. urine) (IPCC, 2006).          258 

4. On-farm GHG model approaches to capture dietary effects on GHG 259 

emissions from livestock systems  260 

In most ruminant systems, CH4 is the predominant source of GHG emissions, with 261 

the diet having a major impact on enteric CH4 from fermentation of feed in the 262 

rumen; the latter is the prevailing GHG source. For the two most important GHG 263 

(CH4 and N2O), there are three generic approaches that on-farm models use to 264 

estimate the effect of dietary characteristics on GHG emissions from livestock 265 

systems. The three approaches (hereafter Types) differ in the level and units the 266 

model is attempting to predict and quantify, and the degree at which diet-related 267 

details are represented, often associated with the number of variables and modelling 268 

approach chosen. The three approaches we identified are: 269 

 A Type 1 approach has a very low level of detail and uses a CH4 emission factor 270 

(EF) per animal and an N2O EF per unit of animal excreta, similar to a Tier 1 level 271 

at a national scale (IPCC, 2006).  272 
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 A Type 2 approach has an intermediate level of detail (Figure 1). It estimates the 273 

energy requirements of the animal (often in terms of ME or NE) based on milk, 274 

meat and fibre production, and animal characteristics. These requirements are 275 

then used to estimate feed DMI; enteric CH4 emissions are then estimated using 276 

a CH4 EF (g CH4 kg-1 DMI).   277 

 A Type 3 approach has a higher level of detail that often involves process-based 278 

modelling, taking into account DMI, diet chemical composition and nutrient 279 

supply, along with feed degradation and fermentation characteristics to predict 280 

(rather than assume) CH4 EF according to a mechanistic, dynamic 281 

representation.  282 

Type 1 models that use a default EF per animal or per unit of excreta N are not 283 

commonly used for on-farm GHG accounting or LCA, and generally only serve at a 284 

national level for inventory purposes. However, some on-farm GHG accounting 285 

models use country-, region- or farm-specific EF and apply these to the number of 286 

animals (e.g., kg CH4 animal-1 year-1) or the amount of excreta N (e.g., kg N2O-N kg-1 287 

N excreted) (diversified Type 1 models; herein Type 1+ models). The EF for these 288 

Type 1+ models can be derived from experimental data (e.g., van der Weerden et 289 

al., 2011; Chadwick et al., 2018) or from detailed process-based modelling that could 290 

also provide look-up tables of EF (e.g., based on farm system, animal type or region) 291 

for such Type 1+ models. Type 1 models that use IPCC default values cannot 292 

capture dietary effects as CH4 and N excreta EF are provided for an average animal. 293 

However, Type 1+ models could capture dietary effects if experimental data or 294 

results from process-based models deliver different EF estimates for an animal (or 295 

per unit of N excreta) consuming different diets.  296 
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 297 

Figure 1. Schematic overview of a generic Type 2 approach for estimating methane (CH4) and nitrous 298 

oxide (N2O) emissions from livestock production systems (modified from de Klein et al., 2019). Green 299 

boxes refer to enteric CH4, orange boxes to manure CH4, and blue boxes to N2O. ME = metabolisable 300 

energy; MJ = mega joules; OMD = organic matter digestibility; VS = volatile solids; B0 = maximum 301 

CH4 producing capacity of manure; MCF = CH4 conversion factor; EF = emission factor. The 302 

efficiency of use of feed energy and protein modulate these fluxes.  303 

 304 

For Type 2 models, a number of alternative approaches have been followed. These 305 

include either a) models that calculate energy requirements to estimate DMI with 306 

fixed EF and N excreta values, with or without different EF values for different stock 307 

classes (e.g., Wheeler et al., 2008), b) models that use prediction equations for 308 

enteric CH4 emissions or for EF estimates based on feeding level, dietary proportion 309 

of concentrate and OM digestibility (OMD) from a large literature database (e.g., 310 
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Eugène et al., 2019), or c) a purely experimentally-driven (empirical) estimate of EF 311 

rather than a meta-analysis (e.g., Hellwing et al., 2016).  312 

For models using Type 2a approaches, the opportunities to capture GHG abatement 313 

from ruminants using diet characteristics are limited. The use of sole indicators of 314 

diets or diet components feeding values such as ME, often calculated from chemical 315 

composition and OMD (irrespective of feeding level), limits the possibilities of GHG 316 

mitigation via nutritional strategies (Waghorn, 2007; Niu et al., 2018). This approach 317 

tends to use animal-, rather than feed-driven EF, and appears less accurate in 318 

accounting for changes in diet and diet characteristics other than by changes in 319 

feeding value. A more detailed alternative to this approach is the use of specific 320 

dietary ingredient EF (i.e., different EF for concentrates, supplements and fresh 321 

forages). Following this approach, emissions from enteric fermentation are 322 

calculated using different EF (g CH4 kg-1 DMI) values for concentrates, maize silage 323 

and grass products (Schils et al., 2006), most likely obtained from respiration 324 

chambers. Type 2b models have a few more opportunities to capture GHG 325 

abatement using diet characteristics. However, these are limited to the predictor 326 

variables included in the empirical enteric CH4 equation (feeding level, OMD and 327 

dietary proportion of concentrate) and the characterisation of non-digestible OM (CP, 328 

NDF, starch, C/N ratio) and N excretion (urinary and faecal), and its effect on manure 329 

EF (INRA, 2018; Eugène et al., 2019). Finally, models that follow Type 2c 330 

approaches have greater opportunities to explore GHG abatement using diet 331 

characteristics by using different EF based on experimental studies. For example, 332 

some experiments have shown that an increased concentration of starch and fat in 333 

the diet resulted in a significantly lower CH4 conversion factor (MCF, % of GEI) 334 

(Hellwing et al., 2016; Niu et al., 2018; Sauvant et al., 2018).  335 
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Alternatively, process-based models could be used to provide diet-specific EF. For 336 

example, Bannink et al. (2020) recently derived lookup tables for specific EF for 337 

feeds and dietary ingredients for a range of diet classes (classified according to the 338 

proportion of maize silage in forage DM) and estimating DMI from process-based 339 

modelling. In this way, the essence of variation predicted by a process-based 340 

modelling approach (Type 3) was introduced by differentiation of EF values and 341 

correction for DMI and diet class in an otherwise typical Type 2a approach.  342 

In all Type 2 models, estimates of DMI, along with the N concentration of the feed, 343 

are used to estimate animal N intake, which provides the basis for estimating N 344 

excretion in urine, faeces and manure effluent. Nitrous oxide emissions from these 345 

sources are then estimated using source-specific EF (e.g., Wheeler et al., 2008). 346 

Furthermore, to explore GHG abatement, the partition between faecal and urinary N 347 

fluxes derived from N intake can be estimated (INRA, 2018) along with CH4 348 

emissions for some mitigating strategies (e.g., for forage diets by Sauvant et al., 349 

2014 in the INRA Method; for various diets by deriving an ND correction factor by 350 

Bannink et al., 2018 in DairyWise). 351 

A Type 3 approach considers the effect of feed intake, feed chemical composition, 352 

ruminal degradation characteristics and end-products of fermentation, as well as 353 

rumen fermentation conditions and physical inflows and outflows of nutrients, to 354 

estimate enteric CH4 emissions (e.g., Bannink et al., 2011; Beukes et al., 2011; 355 

Huhtanen et al., 2015). This is often achieved using process-based (mechanistic) 356 

models that focus on detailed biological and physical processes with explicit 357 

mechanisms being represented, in contrast to the empirical approaches with Type 2 358 
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models which are typically simpler, and the mechanisms are made implicit to the 359 

model.  360 

Nitrous oxide emissions are largely estimated as for Type 2, but feed characteristics 361 

are used to estimate faecal N digestibility and N returned to the different soil N pools 362 

and processes (Bannink et al., 2018; INRA, 2018). In this way, Type 3 approaches 363 

allow for dietary ingredients, feed composition and digestion kinetics to be 364 

considered not only for CH4 but also for N excretion and associated N2O accounting 365 

and mitigation. 366 

5. Selected on-farm GHG models 367 

We have selected a number of (on-farm and animal) models from CEDERS 368 

participant countries, mostly based on degree of adoption and use, and on published 369 

literature. Information on these models was either publicly available or provided by 370 

experienced users. A brief description of the selected models is provided as 371 

Supplementary Material. The source of the model, the inclusion of diet 372 

characteristics and digestion kinetics in calculating enteric CH4, are described in 373 

Table 1. Similarly, the inclusion of diet characteristics in calculating manure-derived 374 

CH4 and N2O from N excreta, are presented in Table 2.   375 

5.1 Brief summary of the models 376 

Most of the selected on-farm GHG models have adopted a Type 2 approach, 377 

generally using CH4 and N2O emission factors (EF) or a CH4 conversion factor 378 

(MCF). Recently, a few hybrid Type 2 / Type 3 approaches have been developed 379 

that combine empirical modelling (through the use of CH4 or N2O EF) and process-380 

based modelling, mostly of rumen and whole tract fermentation and digestion. 381 
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Obtaining an accurate estimation of DMI is an essential first step to obtain accurate 382 

GHG predictions, because this variable is such an overriding factor in enteric CH4 383 

emissions. It also leads to predictions of OM excretion (i.e., VS), manure CH4 384 

emissions, and to predictions of N excretion, in turn a major predictor of N2O 385 

emissions. Estimates of DMI in these models are often obtained from either feed 386 

tables or nutrition models (energy based or protein-plus-energy based) (e.g., 387 

Scandinavian feed units in FarmGHG; the NEL system in GAS-EM; CSIRO (2007) in 388 

OverseerFM) (Type 2 approach) or as an outcome of more sophisticated models. In 389 

experimental settings, measuring feed on offer vs feed refused (housing systems), 390 

inference from animal performance (housing and grazing systems), and the use of 391 

markers and estimates from herbage disappearance (grazing systems), are 392 

commonly used to obtain estimates of DMI. In turn, the information collected in these 393 

settings provides a feedback loop to keep feed tables, nutrition models and ruminant 394 

models relevant and updated.  395 

A second step in this process is the attainment of adequate EF (i.e., CH4 per unit of 396 

DMI and per unit of faeces at grazing, CH4 and N2O per unit of animal excreta). 397 

Emission factors are often obtained from either literature surveys, databases of 398 

experimental data, or based on predictions of process-based models that are able to 399 

be explanatory and consider further detail. The choice will depend on country- or 400 

region-specific data availability and the possibility of adapting and validating the later 401 

models to country- or region-specific conditions.  402 

A subtle distinction can be made between empirical GHG prediction models that 403 

potentially represent the most relevant results obtained from experimental work, and 404 

mechanistic models that attempt to grasp the underlying mechanisms and 405 
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processes. In ruminants, enteric CH4 is primarily produced in the rumen (87% of total 406 

enteric CH4 production) and to a lesser extent in the large intestine (the remaining 407 

13%) (Murray et al., 1976; Torrent and Johnson, 1994; discussed in Ellis et al., 408 

2008). The closer the models are at interpreting and simulating rumen function 409 

(ruminal degradation characteristics and end-products of fermentation), the greater 410 

the opportunity to capture diet characteristics beyond the sole variables OM or DM 411 

intake, and to capture dietary mitigation alternatives.  412 

 413 
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Table 1. Feed characteristics, digestion processes of enteric methane (CH4) calculations in selected on-farm models.  414 

Model (main source), 
country, and model type 

Feed characteristics and processes used for enteric CH4 calculations 

Feed components and feed characteristics Digestion kinetics Enteric CH4 calculation 

Karoline (Danfær et al., 
2006) – Denmark / 
Sweden.  
Type 3 model.  

Forage (for) pdNDF, concentrate (con) pdNDF, for iNDF, con 
iNDF, starch, lactic acid, NH3-N, free aa, peptides, soluble CP, 
insoluble CP, pdCP, for EE, con EE, rest fraction [DM – (ash + 
NDF + starch + lactic acid + VFA + CP + EE)] (contains WSC, 
pectins, organic acids, alcohols). VFA for silages.  

Feed-specific digestion rates (kd) for 
pdNDF, insoluble CP and starch. 
Digestion rate (Kd) of pdNDF 
adjusted for dietary NFC and 
feeding level.  

Rumen H2 based on VFA 
stoichiometry from fermented feed, 
adjusted for feeding level. H2 pool 
adjusted for microbial mass and BH. 
Includes CH4 formation in hind gut. 

FarmGHG (Olesen et al., 
2006) – Denmark.  
Type 2 model.  

CF, NFE, CP, and fat daily intake (kg d-1).   Empirical equation (Kirchgessner et 
al., 1995).  

Valio Carbo® Farm 
calculator – Finland. 
Type 2 model.  

DMI, OMI, GE, ME, DM, ash, OMD, FOM, CP, EPD, EE, NDF, 
iNDF, AAT, feed-AAT; PBV, NFC, NFC/CHO lactic acid, VFA, 
ammonia (g kg-1 N), Ca, P, Na, Mg, K, S, Cl, Fe, Cu, Zn, Mn, I, 
Co, Mo, Se, WSC, starch, iNDF, CF, NFE.  

Digestibility of CP, EE, CF, NFE, 
OM. 

Empirical equations (Ramin and 
Huhtanen, 2013).  

FarmSim (Graux et al., 
2011) – France.  
Type 2 model.   

For and con NDF, digestibility.  
Grazing: adjusted for dietary NE intake and animal needs.  

 IPCC Tier 1 (274 and 279 g CH4 d
-1 

for European and Dutch dairy cows, 
respectively) and Tier 2 (MCF = 6% 
of dietary GEI) (IPCC, 1996).  

INRA Method (Eugène et 
al., 2019) – France.  
Type 2/3 model.   

Not a farm-scale model, but used to progress from Tier 2 to 
Tier 3 at a national scale.  
Energetic requirements: GE, DE, NEL. Feed characteristics: 
DM, OM, CP, NDF, OMD, PC, N balance in the rumen.  

Digestibility of OM, NDF, CP, starch, 
N. Digestive interactions driven by 
feeding level, DMI and BW. Also 
includes digestion rates (kd), N and 
energy use efficiencies. 

Empirical equations (Sauvant and 
Nozière, 2016). Mitigation options 
(Sauvant et al., 2018).  

GAS-EM (Haenel et al., 
2020) – Germany.    
Type 2 model.  

GE, DE, NEL, DM, OM, ash, CP (and/or N); OMD, CF, NFE, 
and fat. No differentiation by seasons and regions.  

 Empirical equation (Kirchgessner et 
al., 1994).  

The GHG model (O’Brien 
et al., 2010) – Ireland. 
Type 2 model.   

Dairy cows on conserved forage: proportion of forage in the 
diet and total DMI.  
Dairy cows on fresh grass: 0.065 × GEI (IPCC, 2006).   

 Empirical equations (Mills et al., 
2003; IPCC, 2006).  

DairyWise (Schils et al., 
2007) – Netherlands.  
Type 2/3 model.  

Different EF for con, maize silage and grass products (20, 22 
and 27 g CH4 kg-1 DMI, respectively). Updated (Bannink et al., 
2020) with EF for different feeds (con ingredients, for qualities 
and diet types; the latter based on % maize silage in dietary 
for) derived from Dairy Tier 3 simulation.   

 CH4 EF × animal intake (Schils et 
al., 2006).  
Updated and corrected CH4 EF 
values (Bannink et al., 2020).  
 

Dairy Tier 3 (Dijkstra et 
al., 1992; Bannink et al., 
2011) – Netherlands. 
Type 3 model.  

DMI, aNDFom, starch, SC, CP, non-ammonia CP, crude fat, 
ash, organic acids (for silages, lactic acid and VFA), and non-
allocated OM, now allocated to sugars, starch and aNDFom 
depending on the ingredient type. 

In situ degradation of aNDFom, 
starch and CP for each diet 
ingredient [washable fraction (W), 
potentially degradable (D), and 

Rumen H2 based on VFA 
stoichiometry from fermented 
substrate (SC, starch, HC, Ce and 
CP) with an adjustment for dietary 



21 
 

rumen undegradable (U) fraction 
and fractional degradation rate (kd) 
of D]. 

for-to-con ratio. H2 pool adjusted for 
microbial growth on AA or NH3-N, 
and for BH of uFA.  

OverseerFM (Wheeler et 
al., 2008) – New 
Zealand.   
Type 2 model. 

DM digestibility, ME and N of pastures and supplements. 
Animal ME requirement from feeding standards (mostly 
CSIRO, 2007).  

 EF (21.6 g CH4 kg-1 DMI) × animal 
intake (IPCC, 2006; Ministry for 
Primary Industries, 2019).  

Whole Farm Model 
(WFM) (Beukes et al., 
2010) – New Zealand. 
Type 3 model.  

Soluble ash, Ce, HC, SC, uFA, starch, large particles in the 
rumen, lignin, insoluble protein, AA, ammonia.  

Microbial biomass and microbes 
associated with starch and (Ce + 
HC) fermentation. Ruminal acetate, 
propionate, butyrate and lactate.  

Enteric CH4 calculation based on H2 
balance from H2 formation from CHO 
and AA fermentation, microbial 
growth, BH of uFA, and VFA profile.  

Arla Carbon tool, Arla 
Foods – Sweden / 
Denmark / Germany / 
United Kingdom.  
Type 2 model.  

GE intake, either specified by the farmer or calculated based 
on NorFor for cows and IPCC (2006) for heifers and bulls, and 
FA.  

Digestibility coefficients: DM, CP, 
CF, structural and non-structural 
carbohydrates, FA, DE.  

Empirical equation (IPCC, 2006). 

NorFor (Nielsen et al., 
2013) – Sweden / 
Denmark.   
Type 2 model. 

DMI and dietary FA and NDF.  Empirical equation (Nielsen et al. 
2015).  

SIMSDAIRY (del Prado et 
al., 2011) – UK.  
Type 2 model.  

DMI (g kg-1 BW d-1 and kg d-1), C18:2 (quantity of linoleic acid in 
the diet), quantity of FA with a chain length ≥ 20 C in the diet.  

 Empirical equation (Giger-Reverdin 
et al., 2003).  

Farmscoper (Gooday et 
al., 2014) – UK.  
Type 2 model. 

DMI, ME.  
 

 Empirical equation (IPCC, 1996), 
using default coefficients derived for 
Western Europe.  

AgRE Calc – UK.  
Type 2 model. 

  Enteric CH4 emissions for different 
livestock classes from IPCC Tier 2 
(IPCC, 2006). 

Abbreviations: AA: amino acids; AAT: amino acids absorbed from the small intestine; BH: biohydrogenation; Ce: cellulose; CF: crude fibre; CHO: carbohydrate; CP: 415 
crude protein; aNDFom: neutral detergent fibre assayed with heat stable amylase and expressed exclusive of residual ash; DE: digestible energy; DMI: dry matter 416 
intake; DOMI: digestible organic matter intake; EE: ether extract (i.e., crude fat); EPD: effective protein degradability; FA: fatty acids; FL: feeding level; FOM: 417 
fermentable organic matter; GE: gross energy; GEI: gross energy intake; HC: hemicellulose; iNDF: indigestible neutral detergent fibre; kd: fractional degradation 418 
rate; kp: fractional passage rate; ME: metabolisable energy; N: nitrogen; NDF: neutral detergent fibre; NE: net energy; NFC: non-fibre carbohydrates [calculated as 419 
DM ‒ (ash + CP + EE + NDF)]; NFE: nitrogen free extract [calculated as DM ‒ (ash + CP + EE + CF)]; OM: organic matter; OMD: organic matter digestibility; OMI: 420 
organic matter intake; PBV: protein balance in the rumen; PC: proportion of concentrate in the diet; pdCP: potentially digestible CP; pdNDF: potentially digestible 421 
NDF; uFA: unsaturated FA; VFA: volatile fatty acids; WSC: water soluble carbohydrates.  422 
 423 
 424 
 425 
 426 
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Table 2. Summary of the approaches used for estimating methane (CH4) and nitrous oxide (N2O) emissions from manure (including urine and faeces 427 
deposited during grazing) and feed characteristics captured in selected on-farm models. 428 
  429 

Model (source) and 
country 

Manure CH4 (including faeces from grazing) 
Manure N2O (including urine and faeces from 
grazing) 

Feed characteristics captured in the model 

FASSET (Olesen et al., 
2002) – Denmark.     

Does not include estimates of manure CH4. Estimates manure N2O using semi-empirical 
equations that calculate nitrification and 
denitrification, and partition the end-products 
into N2 and N2O.   

Dietary N.  

FarmGHG (Olesen et al., 
2006) – Denmark.  

IPCC Tier 2: calculates annual CH4 EF based 
on VS excretion, B0, and MCF (for three 
housing and four storage systems) but uses 
country specific values and also includes 
temperature and storage time functions.  

Estimates N2O for three housing and four 
storage systems as a function of temperature 
and/or storage time and/or tank surface area. 

Dietary N. 

Valio Carbo® Farm 
calculator – Finland.  

Algorithm by Sommer et al. (2004) and 
applying experimentally derived parameters 
for stored slurry (Elsgaard et al., 2016; 
Petersen et al., 2016).  

EF used for calculation of N2O from 
EMEP/EEA (2016) and IPCC (2006) 
(Grönroos et al., 2017). 

Total N, VSD, ash, water, P, TAN, FOM, K.  

FarmSim (Salètes et al., 
2004; Graux et al., 2011) 
– France.  

IPCC Tier 2 for the calculation of CH4 
emissions from manure and housing 
systems. 

Field: N excreta related to energy needs and 
diet quality, and C:N ratio of manure. Soil 
temperature and humidity in a dynamic 
equation. Barn: IPCC Tier 2 for N2O from 
manure and croplands.  

OMD, OM, ME and N.  

INRA Method (Eugène et 
al., 2019) – France.  

Annual CH4 EF per animal based on VS 
excretion (from indigested OM and urinary 
OM, and IPCC Tier 2), B0, MCF, and MS. 
Annual manure EF per head: VS × EC × 365.  

Eugène et al. (2019) does not describe N2O 
approach, but recommend estimations of 
faecal and urinary N, along with 
determination of OMD and N digestibility. 

OMD, OM, ME and N.  

GAS-EM (Haenel et al., 
2020) – Germany.   

IPCC Tier 2: calculates annual CH4 EF per 
head of animal based on VS excretion, B0, 
MCF, and MS. VS excretion for dairy cows 
based on DMI, DOM and ash in feed. 
Country specific values for MCF for different 
manure storage systems. 

Type 1+ with fixed N2O and NH3 EF 
disaggregated for different manure and 
storage types and IPCC default for indirect 
N2O from N leaching.  

GE, ME, NEL, OMD, ash and N for key 
livestock categories 

The GHG model (O’Brien 
et al., 2010) – Ireland.  

Type 1+ with fixed CH4 EF disaggregated for 
storage (slurry, manure, silage effluent) or 
soil applied (monthly slurry, manure).   

Type 1+ with fixed N2O EF disaggregated for 
storage (slurry, manure) or soil applied 
(urine, faeces, slurry, manure), plus grazing 
Nex.  

Total DMI, OMD, and CP of the diet. 

DairyWise (Schils et al., 
2007; Bannink et al., 
2020) – Netherlands.  

Type 1+ with a fixed CH4 EF for manure 
storage and one for manure applied to land. 

Type 1+ with a fixed N2O EF for stored 
manure and EF based on soil type and water 
level for manure N inputs to soil; and fixed 
fractions for N leaching and ammonia 
volatilisation.  

Total DMI, OMD, and CP of the diet. 
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Dairy Tier 3 (Bannink et 
al., 2018) – Netherlands.  

IPCC Tier 2: it calculates annual CH4 EF per 
head of animal based on VS excretion, B0, 
MCF, and MS. VS excretion based on OMD 
and VSD. Use of a Tier 3 is limited to the 
prediction of ND and urine N excretion 
(implemented), and OMD and VS excretion 
(currently not implemented).   

IPCC Tier 2 with EF for urine, faeces and 
manure storage and land application. IPCC 
Tier 3 for dairy cattle with prediction of Nex in 
urine based on N intake, apparent faecal N 
digestibility and N retention in animal product.  
Nex = N intake – N retention for all other 
animal classes. 

Tier 2: total DMI, ME, OMD, and CP of the 
diet. Tier 3: DMI, aNDFom, starch, sugars, 
CP, non-ammonia CP, crude fat, ash, organic 
acids (for silages, lactic acid and VFA). In situ 
degradation of aNDFom, starch and CP 
[washable (W), potentially degradable (D), 
and rumen undegradable (U) fraction, and 
fractional degradation rate (kd) of D].  

OverseerFM (Wheeler et 
al., 2008) – New Zealand. 

CH4 from anaerobic ponds and solids 
storage, application of stored manure to land, 
and faeces from grazing livestock. Based on 
proportion of faecal DM in each component 
and uses NZ inventory EF and IPCC Tier 2. 

Estimates Nex based on DMI, dietary CP, 
and N in product; then splits between urine 
and faeces based on dietary N. Proportions 
urine and faeces to MMS and applies N2O EF 
from the NZ inventory.  

Total DMI, OMD, ash, CP. 

Whole Farm Model 
(WFM) (Beukes et al., 
2010) – New Zealand. 
 

Does not estimate CH4 from manure, but it 
does estimate OMD.  

Does not estimate N2O from manure, but it 
does estimate N excretion in faeces and 
urine (g N d-1) 

Total CP intake. 

Arla Carbon tool, Arla 
Foods – Sweden.  

Emissions of CH4 from manure is calculated 
based on IPCC (2006).  

N2O emitted from manure based on the 
amount of N in excreta. Animal-N balance. 
Total N2O from manure systems calculated 
as the sum of direct and indirect N2O 
emissions.  

Total CP intake and VS, in addition to DM, 
CP, CF, FA, DE, NE. GE is calculated. 

SIMSDAIRY (del Prado et 
al., 2011) – UK.  

CH4 from manure in storage based on IPCC, 
and manure on land from country specific EF 
(per animal) derived from Chadwick and Pain 
(1997) and Yamulki et al. (1999) for applied 
manure and faeces from grazing. 

N2O from manure storage from 
EMEP/CORINAIR (2005). N2O from Nex 
deposited on soil estimated from mechanistic 
approach (nitrification and denitrification). 
Urinary and faecal N split based on dietary N. 

Total DMI, OMD, ash, CP.  

Cool Farm Tool (Hillier et 
al., 2011) – UK.  

IPCC Tier 2: calculates annual CH4 EF per 
head of animal based on VS excretion, B0, 
MCF, and MS. Uses IPCC range of MMS and 
animal categories. Country-specific (rather 
than IPCC) EF for manure composting. 

IPCC Tier 2: calculates annual N2O from 
MMS using IPCC N excretion rates for 
‘animal category by region’. Uses IPCC 
range of MMS and animal categories. 
Country-specific (rather than IPCC) EF for 
manure composting. 

Total DMI, OMD, ash, CP. 

Farmscoper (Gooday et 
al., 2014) – UK.  

IPCC Tier 2 (IPCC, 1996).  IPCC Tier 2 (IPCC, 1996) but with NH3 and N 
leaching losses calculated in the model.  

Total DMI, OMD, ash, CP. 

AgRE Calc – UK.   IPCC Tier 2: calculates annual CH4 EF per 
head of animal based on VS excretion, B0, 
MCF, and MS. 

IPCC Tier 2: calculates annual N2O from 
manure based on livestock numbers, 
Nex/head, MS, and N2O EF for each MMS. 

Total DMI, OMD, ash, CP. 

Abbreviations: B0: maximum CH4 producing capacity of manure; Faecal DM: faecal dry matter (estimated from DMI and OMD); FOM: fermentable organic matter; 430 
MCF: CH4 conversion factor for each MMS (by climate); MMS: manure management system (including grazing); MS: fraction of livestock handled in different MMS; 431 
Nex: N excretion (estimated based on DMI as used for enteric CH4, N concentration of the diet and N removal in products); OMD: organic matter digestibility; TAN: 432 
total ammoniacal N; VS: volatile solids (estimated based on OMD and ash concentration of feed); VSD: volatile solids digestibility.  433 
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6. Capturing the effects of diet on emissions from ruminant systems using 434 

on-farm GHG models 435 

6.1  Opportunities  436 

Most prediction models of GHG emissions are based on feed (DM or GE) intake 437 

derived from feed evaluation systems applied in practice. Although these models 438 

consider the main driver of enteric CH4 emissions, they are inadequate to capture 439 

the effect of dietary chemical components and dietary chemical/physical 440 

characteristics on GHG emissions. As a result, these models cannot capture the 441 

effect of potential dietary GHG abatement options that alter diet characteristics such 442 

as lipid (Grainger and Beauchemin, 2011), fibre (Niu et al., 2018), and starch and 443 

sugar concentrations (Hindrichsen et al., 2005), ruminal and whole tract digestibility 444 

(Appuhamy et al., 2016), or secondary plant metabolites (Jayanegara et al., 2012; 445 

Sauvant et al., 2018). As a consequence, there is an increasing demand for models 446 

that take into account feed properties that both improve GHG prediction and can 447 

capture nutritional mitigation strategies (Niu et al., 2018; van Lingen et al., 2019; 448 

Benaouda et al., 2019).     449 

A close examination of several enteric CH4 prediction equations for dairy cows used 450 

in on-farm GHG models showed that equations based on important aspects of diet 451 

composition performed better (i.e., having a greater accuracy) than those based on 452 

simpler, generic parameters or Type 1 / 2 equations (Ellis et al., 2010). These 453 

findings are in agreement with the widely spread notion that enteric CH4 production 454 

is primarily driven by both amount and composition of feed consumed. More 455 

specifically, equations that included important aspects of diet composition, such as 456 

carbohydrate components [non-structural carbohydrates (NSC), hemicellulose (HC) 457 
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and cellulose (Ce) (Moe and Tyrrell, 1979)] were more accurate in their predictions 458 

of enteric CH4 emissions compared with other equations (Ellis et al., 2010). The Moe 459 

and Tyrrell (1979) equation was used in an early version of the Molly model 460 

(Baldwin, 1995) to predict CH4 emissions (Palliser and Woodward, 2002). Ellis et al., 461 

(2010) examined other equations including those of Blaxter and Clapperton (1965) 462 

(also tested in Molly), Kirchgessner et al. (1995) used in FarmGHG, Giger-Reverdin 463 

et al. (2003) used in SIMSDAIRY, Corré (2002) used in Schils et al. (2005), Schils et al. 464 

(2006) used in DairyWise (recently updated based on Bannink et al., 2020), and a 465 

Type 1 (Tier 1) and a Type 2 (Tier 2) model from IPCC (1996), used in FarmSim and 466 

Phetteplace et al. (2001), respectively.    467 

Due to the inclusion of diet composition information, the Moe and Tyrrell (1979) 468 

equation was the best performing in a direct comparison with other empirical 469 

equations (Ellis et al. 2010), as most of these equations did not include such 470 

information. Although the Moe and Tyrrell equation includes some important aspects 471 

of chemical composition (and an indirect estimate of feed intake level), other dietary 472 

characteristics that have proven effective in CH4 mitigation (i.e., lipid, starch and fibre 473 

concentration, OM digestibility; Dijkstra et al., 2010; Bannink et al., 2016), are not. 474 

Furthermore, the equation assumes a constant CH4 yield per unit of NSC, HC and 475 

Ce, as discussed in Ellis et al. (2008). The implications of this assumption is that it 476 

excludes differential ruminal fermentability and passage rate of these components 477 

associated with variations in feed intake level, in turn affecting efficiency of microbial 478 

synthesis, VFA production, ruminal pH, VFA profile and CH4 production (Hindrichsen 479 

et al., 2005; Dijkstra et al., 2010). Overall, the use of fixed CH4 conversion factors led 480 

to low CH4 prediction accuracy and imposes severe limits to opportunities for 481 

nutritional mitigation of GHG emissions (Ellis et al., 2010). Consistent with these 482 
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findings, Jentsch et al. (2007) concluded that a major component of CH4 production 483 

could not be explained solely by DMI. Consideration of all digestible nutrients in the 484 

diet revealed that the carbohydrate fraction, particularly digestible (crude) fibre and 485 

digestible N-free residuals contributed the most to CH4 production, whereas 486 

digestible fat had an inhibitory effect (Jentsch et al., 2007).  487 

More recently, Niu et al. (2018) identified the main predictor variables of dairy CH4 488 

production (g CH4 cow-1 day-1), and examined the trade-offs between the availability 489 

of input variables (including diet characteristics) and the accuracy of models 490 

(assessed with several measures of model predictive ability) using the large dairy 491 

CH4 database from the international collaborative initiative GLOBAL NETWORK 492 

(https://globalresearchalliance.org/research/livestock/collaborative-activities/global-493 

research-project/). Along with records of enteric CH4 production, milk yield, milk 494 

composition and BW, the database includes dietary concentrations of GE, CP, EE, 495 

NDF, ash and measured (or estimated) DMI. In addition to supporting the well-496 

established notion that DMI is the most important variable to predict CH4 production 497 

from dairy cows, the inclusion of diet characteristics such as NDF and EE 498 

concentration improved the accuracy of prediction of enteric CH4 production (Ramin 499 

and Huhtanen, 2013; Niu et al., 2018).  500 

The GLOBAL NETWORK project data were also used by Benaouda et al. (2019) to 501 

examine the predictive ability of existing enteric CH4 equations compared with 502 

measurements obtained from calorimetry chambers, the SF6 tracer technique and 503 

automated head chambers across ruminant species. Enteric CH4 emissions (g CH4 504 

d-1) from dairy cattle were suitably predicted by equations that included feed intake 505 

(DMI, GEI) and/or feed level (DMI/BW) as predictors (Mills et al., 2003; Ramin and 506 

https://globalresearchalliance.org/research/livestock/collaborative-activities/global-research-project/
https://globalresearchalliance.org/research/livestock/collaborative-activities/global-research-project/
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Huhtanen, 2013; Charmley et al., 2016). However, the best performing equation 507 

(Ramin and Huhtanen, 2013) included GE digestibility and lipid concentration (EE), 508 

in addition to feeding level (Benaouda et al., 2019). Although most equations that 509 

include digestibility use digestible OM rather than digestible GE, both variables have 510 

been well established predictors of enteric CH4 emissions (Blaxter and Clapperton, 511 

1965; Sauvant and Nozière, 2016).   512 

Ellis et al. (2010) showed that the accuracy of enteric CH4 predictions using a fixed 513 

CH4 energy conversion factor was low. In addition to limiting the possibility of 514 

implementing nutritional mitigation strategies (as mentioned above), the use of such 515 

fixed conversion factors can potentially introduce substantial error at the farm scale. 516 

These errors can escalate at larger scales (e.g. in GHG inventories) and may lead to 517 

unsuitable mitigation recommendations or inaccurate projections of CH4 emissions 518 

over time (Bannink et al., 2011).  519 

The effect of dietary strategies on N2O emissions are largely driven by total N intake, 520 

or more importantly, the total N output in excreta or manure. Dietary N concentration 521 

is therefore a key parameter that needs to be captured, as is the case in most on-522 

farm GHG models. In addition, the partitioning of N between urine and faeces affects 523 

N2O emissions, as it is well-accepted that N2O emissions from urine are greater than 524 

those from faeces (IPCC, 2019). Diet characteristics that affect N partitioning in urine 525 

and faeces include, amongst others, DMI, N intake, rumen-fermentable OM leading 526 

to the synthesis of microbial N, DM digestibility, CP concentration, and the presence 527 

of secondary metabolites such as tannins. Dry matter digestibility and CP are 528 

negatively related to N partitioning in faeces, whereas tannin concentration is 529 

positively related to the proportion of N excreted as faecal N (de Klein and Eckard, 530 
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2008; Sauvant et al., 2014). All the on-farm GHG models reviewed in this paper 531 

capture DMI, dietary DMD and CP (or N) concentration, but very few (if any) take 532 

account of more detailed aspects such as the effect of differing profiles of N 533 

disappearance (ruminal and whole-tract) or the concentration of plant secondary 534 

metabolites such as tannins in the diet. 535 

In a meta-analysis by Sauvant et al. (2014), relationships between CH4 and urinary 536 

outputs were derived for ruminants fed forages (temperate and tropical forages) as 537 

their sole diet. It was shown that CH4 production was closely related to digestible OM 538 

intake when both variables were expressed per unit of DMI or LW. This suggests 539 

that digestible OM intake is a key parameter to be captured in models for estimating 540 

CH4 emissions from forage-fed ruminants. In agreement with these findings, Warner 541 

et al. (2017) reported that enteric CH4 methane emissions were clearly affected by 542 

grass silage quality (based on harvesting leafy to late-heading grass maturity 543 

stages), more so than by DMI level (based on stage of lactation). Per unit of OM or 544 

NDF digested, CH4 yields were similar between DMI levels, but noticeable increases 545 

were seen when reported on a digestible OM intake basis (Warner et al., 2017). 546 

Sauvant et al. (2014) also showed that, when animals are managed indoors with an 547 

anaerobic slurry storage, mitigation of enteric CH4 appeared to be partly offset by a 548 

higher production of CH4 from manure.  549 

The use of dynamic mechanistic modelling in the simulation of enteric CH4 emissions 550 

and N2O emissions from animal excreta, has resulted in more accurate predictions 551 

than simple regression equations (Benchaar et al., 1998). Although the INRA/IPCC 552 

(2006) ratio for enteric CH4 emissions was close to unity and estimates did not differ 553 

between models for adult cows (i.e., most cattle in France), the use of dietary 554 
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characteristics such as digestible OM intake (corrected for feeding level and 555 

proportion of concentrate in the diet) in the prediction allows for different mitigation 556 

strategies to be tested (Sauvant et al., 2018; Eugène et al., 2019). Furthermore, 557 

mechanistic modelling of methanogenesis in particular, has allowed for IPCC Tier 3 558 

approaches to go beyond the farm scale (Bannink et al., 2011; Huhtanen et al., 559 

2015). In addition, the use of a country-specific (i.e., Dutch studies only) Tier 3 560 

approach to predict faecal N digestibility (Bannink et al., 2018) resulted in more 561 

accurate predictions than using feeding tables (CVB model; CVB, 2011), in particular 562 

for Dutch studies for which more accurate estimates of model inputs on rumen 563 

degradability of substrates were available. The over-prediction of the CVB model 564 

would lead to an over-prediction of urine or ammoniacal N excretion, in turn leading 565 

to biased estimations of the N mitigation potential from nutritional strategies (Bannink 566 

et al., 2018).  567 

6.2 Challenges 568 

Overall, on-farm models that predict enteric CH4 emissions are based on a few 569 

animal and feed characteristics, but DMI is typically the key parameter to consider. 570 

Analyses of large datasets of individual dairy cows have shown that simplified 571 

equations based on DMI alone or in combination with a few feed and/or animal 572 

related variables can predict mean enteric CH4 emissions with a similar accuracy to 573 

that of more detailed empirical equations (Hristov et al., 2018; Niu et al., 2018). 574 

Although reliable for national emission inventory purposes, these approaches do not 575 

allow for exploring nutritional mitigation options on specific farms.  576 

Accurate predictions of DMI are essential to achieve accurate predictions of livestock 577 

emissions, including enteric and manure CH4, and N2O emissions. In some 578 
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confinement-type feeding systems where predictions of DMI can rely on robust and 579 

frequently-updated feed evaluation systems, the issue of prediction accuracy 580 

becomes of less concern. For example, using data from North America, model 581 

equations that used estimates of DMI could predict enteric CH4 emissions as 582 

accurately as when using measured DMI data, provided DMI could be estimated with 583 

reasonable accuracy (Appuhamy et al., 2016), and prediction accuracy was not 584 

improved by further addition of diet characteristics to the model (Niu et al., 2018). 585 

Using European data, estimates rather than measured DMI provided for acceptable 586 

predictions (RMSPE ≤15%; CCC ≥ 0.50), whereas using estimates of DMI for 587 

Australia and New Zealand provided for poor predictive performance of enteric CH4 588 

emissions (RMSPE > 25%; CCC < 0.40) (Appuhamy et al., 2016). The differences in 589 

accuracy were most likely attributed to the DMI prediction models used, based on 590 

North American data that are unlikely to address diets with a high proportion of 591 

forage (Appuhamy et al., 2016; Hristov et al., 2018). As expected, forages (offered 592 

either fresh or conserved) dominated the diets used in Australia and New Zealand 593 

(mean values of 88% vs. 52% and 64% for North American and European diets, 594 

respectively). Obtaining reasonable estimates of herbage DMI in a grazing situation 595 

can be challenging, as results obtained from different methods (e.g., the use of 596 

markers, herbage disappearance and inferences from animal performance) can vary 597 

substantially and can potentially be misleading (Macoon et al., 2003).  598 

The type of livestock farming system is also an important consideration when 599 

assessing the value of refining on-farm GHG models to capture more details 600 

concerning dietary strategies. In fully housed livestock systems, where animals are 601 

fed a total mixed ration for example, dietary measures to reduce GHG emissions can 602 

be more easily adopted compared with systems that rely on grazing-based diets to 603 
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varying degrees. In reality, it is highly unlikely that one feed constituent (e.g., NDF 604 

concentration) will vary while others remain unchanged, due to the inherent 605 

association between diet constituents in diet formulation, but any goal-directed 606 

change is easier to achieve in confinement-type diets or through supplemental 607 

feeding than in grazing situations. The latter also offer dynamic changes (seasonal, 608 

daily, hourly) in herbage quantity, composition, nutritive value, and animal 609 

preference, which add complexity to DMI predictions from pasture-based systems.  610 

Recently, Niu et al. (2018) highlighted the potential effects of increased intake and 611 

associated effects such as increased passage rate and reduced time for ruminal 612 

digesta retention, which in turn can reduce OM digestibility and CH4 production per 613 

unit of feed (i.e., a reduction in g CH4 kg-1 DMI) (Van Soest, 1994). Feed intake is a 614 

consequence of feed on offer, animal production demand and digestibility of 615 

nutrients. In contrast with Type 3 models where the effect is captured, Type 2 616 

models do not account for the effect of changes in feeding level, often expressed as 617 

multipliers of maintenance energy levels (e.g., NRC, 2001).  618 

Another challenge for on-farm GHG models to capture dietary strategies is the 619 

accuracy and availability of input data to run the models. Availability of data and 620 

transparency in the description and adoption of methodological procedures are 621 

essential to make informed decisions on GHG abatement strategies, and even more 622 

so when these tools are to inform policy (Hall et al., 2010). The more detailed the 623 

model in terms of inclusion of dietary characteristics, the higher the level of detail 624 

that is required for the input and activity data. This not only includes detail on diet 625 

composition (e.g., proportions of different feed types), but also on diet characteristics 626 

within each ration ingredient or feed type. In many cases, the complexity of obtaining 627 
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or recording additional input data needs to be carefully balanced against the benefit 628 

of being able to capture the effect of a given dietary strategy in the model. 629 

Nevertheless, in many cases of intensive farming systems, reasonable estimates or 630 

feed table values can be used as inputs, or obtained from commercial lab ‘high-631 

throughput’ analysis of nutritional value (e.g. Near Infra-Red Spectroscopy). These 632 

estimates or feed table values can be more generic than detailed measurements as 633 

an input, but they still offer potential to capture more of the variation in GHG 634 

emissions, as these estimates are based on variation in feed chemical composition.  635 

Empirical models that include commonly measured dietary inputs can be fairly 636 

successful in predicting CH4 emissions (Ellis et al., 2007). However, the impact of 637 

mitigation strategies to reduce CH4 emissions needs to be assessed in a more 638 

integrated way, and often empirical models do not have the biological basis for such 639 

assessment. Mathematical models of fermentation and digestion have become 640 

extremely useful to simulate the complex digestive processes in the rumen, to 641 

increase our understanding of the complexity of systems and to identify areas where 642 

knowledge is lacking and more research is required to improve both understanding 643 

and accuracy of predictions (Ellis et al., 2008). Dynamic components of CH4 644 

predictions have been added to these mechanistic models (e.g., Benchaar et al. 645 

1998; Mills et al. 2001) and delivered improved prediction of the effect of specific 646 

mitigation measures. However, limitations in the accuracy of CH4 predictions 647 

continue to surface (Bannink et al., 2016). Earlier work in search for causes of 648 

inaccurate simulation of rumen function (leading to inaccurate predictions of enteric 649 

CH4) already identified the need for accurate estimates of stoichiometry of VFA 650 

production with substrate fermentation and VFA absorption kinetics (Bannink et al., 651 

1997) and interspecies H2 transfer (Ellis et al., 2008).   652 



33 
 

Finally, it is important to note that most of the models available (and those selected 653 

in this review) have been developed for temperate conditions and related animal 654 

breeds and feed nutritive values, often involving adult Holstein-Friesian and Jersey 655 

cattle with ad libitum access to feed and quality drinking water (i.e., low nitrate 656 

concentrations) under European and New Zealand conditions. Models have been 657 

developed for diets or dietary ingredients with a common mineral, DM and OM 658 

concentration including typical grass / legume mixed pastures (fresh and conserved), 659 

maize (grain and silage), other grains, concentrates and by-products, with feed 660 

nutritive values described in various feed tables. Development and evaluation of 661 

models for livestock production systems in arid and tropical regions is extremely 662 

limited to date, highlighting the need for greater effort by the international research 663 

community in this area. 664 

7. Conclusions 665 

The models reviewed in this paper generally include Type 2 or combinations of Type 666 

2 and Type 3 approaches depending on livestock class, GHG considered and 667 

emissions source involved. The majority of enteric CH4 models use a Type 2 668 

approach to estimate DMI from production data and animal population 669 

characteristics, whereas a limited number of models use the more detailed 670 

mechanistic Type 3 approach. Type 2 models can capture a varying range of diet 671 

characteristics, including total DMI, DM or OM digestibility, ME/GE, and CP 672 

concentration. Most models then use a CH4 EF (g CH4 kg-1 DMI) and a N2O EF 673 

(N2O-N emitted as % of N excreted) to estimate GHG emissions. Some models 674 

include different CH4 EF for different diets or dietary ingredients (e.g., DairyWise, 675 

with EF values derived from a Type 3 approach) rather than CH4 EF purely based on 676 
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animal species (e.g., OverseerFM). Only Type 3 models represent underlying 677 

mechanisms such as ruminal fermentation and total-tract digestive processes (e.g., 678 

Karoline, Dairy Tier 3, Whole Farm Model). Prior to a proper representation of these 679 

processes, ruminal digestibility of, and competition for, different substrates, bypass 680 

fractions, and the rate (faster fermentation, lesser CH4 production) and extent of 681 

fermentation, along with adequate descriptions of OM chemical composition, need to 682 

be captured by these models. Other aspects such as the effect of secondary 683 

metabolites on CH4 EF also need to become apparent.   684 

There are opportunities for all models to improve their ability to capture dietary 685 

mitigation strategies, but the value of doing so should be carefully balanced against 686 

gains in accuracy of the estimates, the need for additional input and activity data, the 687 

variability actually encountered on-farm and among farms, and the need for 688 

consistency between different approaches that are to be used for different purposes 689 

(inventory vs. on-farm accounting vs. life cycle analysis).  690 
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