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Abstract

The thesis contributes to the quantitative measurement of model risk of popular
models for market risk measures (focusing on Value-at-Risk and Expected Short-
fall, denoted by VaR and ES) and volatility forecasting in several ways, and it
consists of three main chapters.

The first main contribution is the introduction of measurement of the model
risk of ES as the optimal correction needed to pass several ES backtests. We in-
vestigate the properties of our proposed measures of model risk from a regulatory
perspective. The empirical results show that for the DJIA index, the smallest
corrections are required for the ES estimates built using GARCH models. Fur-
thermore, the 2.5% ES requires smaller corrections for model risk than the 1%
VaR, which advocates the replacement of VaR with ES as recommended by the
Basel Committee. Also, if the model risk of VaR is taken into account, then the
corrections made to the ES estimates reduce by 50% on average.

The second main contribution is the development of a new scoring function-
based model risk estimation methodology for measuring the joint model risk of

the pair of risk measures, VaR and ES, at a given significance level. A simulation



vi

study is carried out to illustrate and analyze the proposed model risk measure
across various market risk models. The newly proposed technique accounts for
a large proportion of true model risk for a wide set of models popular in the
risk management literature. An empirical analysis illustrates its application for
different asset classes. The RiskMetrics model and Historical Simulation have the
highest level of joint model risk and the highest ES model risk for various assets
among all models considered.

The third main contribution is the introduction of a new model risk estimation
methodology for volatility models based on the QLIKE loss function. The reli-
ability of the proposed measure has been verified via simulations and compared
with the theoretical model risk measure. The efficiency of volatility models can be
improved after adjusting variance estimates for model risk. In an empirical study
based on several assets, among the models considered, the RiskMetrics method,
RW1000 and the ARCH-type models are the most affected by model risk. We

find that after crises, model risk increases for poorly fitting volatility models.
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Chapter 1

Introduction

1.1 Motivation for the Thesis

Measuring, forecasting and controlling financial risk have been tremendously im-
portant amongst academics, policymakers, regulators and finance practitioners,
as suggested by |Christoffersen| (2012),|Andersen et al.| (2013)), [McNeil et al.| (2015])
and others. The common categories of financial risk, which we have been dealing
with for many years, are market risk, credit risk and operational risk. Due to the
long-lasting adverse consequences of the 2008 global financial crisis, the |[Federal
Reserve| (2011) raises awareness of model risk and provides supervisory guidance
on managing model risk (also see the guidelines of the European Banking Au-
thority) 2014). From their point of view, the term model refers to a quantitative
approach or system that digests inputs and produce quantitative estimates using

statistical, economic, financial techniques and assumptions, and the use of models
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invariably comes with cost. Model risk can negatively affect the decisions of reg-
ulators and risk managers in evaluating the risks and defining capital adequacy
requirements, as well as lead to financial losses for institutional investors who
heavily depend on models in making investment decisions.

Regarding the increasingly extensive use of models and the growing complexity
of models, model risk is prevailing and inevitable, for example, in pricing models
and risk measurement models, so measuring and managing this type of risk are
becoming necessary and nontrivial. In order to manage model risk properly like
other types of risk, the regulators suggest that banks should identify the sources
of model risk and assess the magnitude of model risk. Based on the significant
work of [Kerkhof et al.| (2010) which first distinguishes the sources of model risk
in the context of econometric modeling, this thesis is focused on three main
components of the total model risk: 1) parameter estimation risk arises when
model parameters are inaccurately estimated, which has been frequently discussed
in the current literature; see for example, Christoffersen and Gongalves| (2005),
Hartz et al. (2006), |[Escanciano and Olmo| (2010a)) and Pitera and Schmidt| (2018));
2) model misspecification risk! arises when the model is misspecified, documented
in (Cont| (2006) who studies the impact of this component on the pricing models
different from our focus on the market risk models; 3) identification risk arises
when some information is not detected and considered for forecasting.

The focus of this thesis is on measuring the model risk of risk measures in

the context of market risk. Market risk, as a significant risk type, refers to the
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risk of a financial portfolio due to changes in the market prices of the underlying
assets such as stock, foreign exchange, bond and so forth. The statistical risk
measures, Value-at-Risk (VaR) and Expected Shortfall (ES), are widely accepted
for market risk measurement and management. The VaR measure quantifies the
minimum loss of holding a financial portfolio which should be only exceeded with
a small critical probability (typically 1% or 2.5%) over some time period (on
a daily basis, for example). As required by the Basel Committee on Banking
Supervision (2011)), market risk should be measured by ES which is defined as
the average loss beyond the VaR threshold.

In the risk management literature (e.g. |Christoffersen, 2012), VaR and ES are
often defined as positive risk measures (we follow this sign convention in Chapter
2)), which can be interpreted as positive losses of the financial portfolios. However,
VaR and ES are defined as negative measures in the scoring function literature
(e.g. [Fissler and Ziegel, 2016, and are interpreted as negative log returns. To keep
consistency with the scoring function literature, we use negative risk measures in
Chapter [3] For the statistical computation of VaR and ES measures, a variety of
risk models produce model-dependent risk estimates, meaning that the VaR and
ES measures are exposed to model risk that occurs when a potentially not-well
suited risk model leads to imperfect risk estimates (the definition of model risk
is taken from [Barrieu and Scandolo} 2015)).

Also, the forecasting of the volatility of financial times series plays a crucial

role in estimating risk measures and other applications in the financial world,
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for example, in pricing sophisticated derivatives. The current extensive volatility
modeling literature covers the family of autoregressive conditional heteroscedas-
ticity (ARCH) models, stochastic volatility models as well as realized volatility
models, in a univariate or multivariate setting (see a comprehensive overview of
volatility models in [Bauwens et al| [2012). Naturally, the use of these finan-
cial econometric techniques that compute volatility estimates invariably presents
model risk.

To manage model risk more effectively, it is of much interest to quantify the
model risk of risk models as well as of volatility models. To the best of our
knowledge, the literature on measuring the model risk of risk models or volatility
models is limited. Ideally, if for a given model the true values of target variables
(risk or volatility estimates) were observable, then one could measure model risk
based on the distance between the true values and the estimated ones. However,
the difficulty in measuring the model risk of risk or volatility estimates is that the
target variables are latent and not observed ex-post, so the measurement of model
risk becomes challenging. The ultimate goal of this thesis is to quantify model
risk, account for this type of risk as part of capital requirements as requested
by the regulatory authorities, and further facilitate the advance of model risk

management.
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1.2 Overview of the Thesis

This thesis offers several model risk estimation methodologies which are aimed
at numerically estimating the model risk of market risk models or univariate
volatility models.

Firstly, this thesis quantifies ES model risk as a correction required for ES
estimates of a given model in order to pass several ES backtests jointly, which
links model error and statistical testing. In terms of ES backtesting, a time
series of desirable ES forecasts should have an appropriate frequency of exceptions
which refer to the realized observations (e.g., returns) beyond the corresponding
VaR (e.g. VaR in returns), the absence of volatility clustering in the tail and
a suitable magnitude of the exceptions. Regarding these desirable criteria, we
mainly implement the unconditional/conditional coverage test for ES of |Du and
Escanciano| (2016), and the Z, test of |Acerbi and Szekely (2014) (additionally,
the exceedance residual test of [McNeil and Freyl [2000] is used as an alternative to
the Z, test). Such a backtesting-based correction methodology for ES can be a
practical method to improve ES estimates, and whilst not perfect, this provides
a possibility of measuring ES model risk.

Moreover, |Artzner et al.| (1999) argue that effectively regulated measures of
risk (market and nonmarket risks) should satisfy the coherence properties, namely,
monotonicity, translation invariance, subadditivity and positive homogeneity. We

examine whether the aforementioned properties hold for our proposed ES model
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risk measure from a regulatory perspective. For our chosen measure of ES model
risk which considers the unconditional and conditional coverage tests for ES
jointly, all the desirable properties hold except for the subadditivity.

Additionally, we analyze the impact of VaR model risk on ES model risk,
primarily for two reasons: 1) for a given model, VaR model risk can affect the
calculations of ES estimates, as the inaccuracy of VaR estimates is carried over
to the estimated ES which is often a by-product of the VaR estimation procedure
(see, e.g. |Patton et al., 2019); 2) in terms of this proposed backtesting-based
correction technique, wrong VaR estimates may distort the backtesting results,
thus leading to inappropriate corrections of ES estimates.

The empirical analysis shows that the 2.5% ES is less affected by model risk
than the 1% VaR across different models, thus advocating the replacement of the
1% VaR with the 2.5% ES. Also, if VaR model risk is removed first, then the
corrections made to the ES estimates reduce by 50% on average.

Secondly, this thesis develops a scoring function-based model risk estimation
methodology that fills in a gap between the scoring function literature and the
model risk literature. As the optimal risk estimates can be uniquely obtained via
minimizing the expected score of a given scoring function within the F'Z class
(Fissler et al., 2016) that is strictly consistent for the pair of risk functionals
(VaR, ES), we estimate the joint (VaR, ES) model risk of a certain risk model
as the average distance between the estimated (VaR, ES) and the improved pair

of (VaR, ES) estimates based on a given F'Z scoring function over a model risk
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evaluation window, as well as estimate ES model risk solely as a by-product.

To allow comparisons with true model risk, we illustrate the newly proposed
model risk estimation methodology with a simulation study in which three specific
FZ scoring functions are used. We find a high similarity between the true and
estimated values of joint (VaR, ES) model risk as well as for ES model risk using
a wide set of models popular in the risk management literature, as evidenced by
correlations varying from 0.8 to 0.987 and an explanatory power of our proposed
model risk measures above 50%. Our proposed scoring function-based model
risk measures satisfy all coherence properties of a measure of risk except for the
subadditivity in the simulated scenarios numerically.

We also conduct an empirical study to highlight the application of the scoring
function-based model risk estimation method for different asset classes, showing
that the RiskMetrics method and Historical Simulation have a very high level of
joint model risk and ES model risk, among all the models considered, particularly
during crisis periods. In addition, the models suffering from model risk, which
fail the backtests, can survive the backtesting procedure after adjusting the risk
estimates for model risk.

Risk models and volatility models share the latent feature of the target pre-
diction(s), so the scoring function-based model risk estimation methodology for
market risk models is extended to the analysis of model risk measurement of
volatility models.

Thus, this thesis introduces a model risk estimation methodology based on



1.2. Overview of the Thesis 8

the MSE or QLIKE loss function to quantify the model risk of volatility models.
This analysis not only reinforces the model risk estimation methodology based
on scoring functions but contributes to measuring model risk in the volatility
forecasting literature. The MSE and QLIKE loss (scoring) functions which are
strictly consistent for volatility estimates are considered due to their widespread
use in assessing the accuracy of volatility models (Patton, |2011). We estimate
the model risk of volatility models based on the distance from the raw volatility
estimates to the improved ones obtained by minimizing the expected score of
MSE or QLIKE loss function, considering two different optimization strategies:
1) the first one is via making additive adjustments on the volatility estimates and
2) the second is via making multiplicative adjustments on the volatility estimates.

In a simulation analysis, we consider different optimization strategies to im-
prove on variance estimates, compare different lengths of optimization windows
and model risk evaluation windows, and then recommend the QLIKE-based model
risk estimation methodology with additive adjustments made to the volatility es-
timates, as we find that the proposed method leads to high correlations, averaging
from 0.88 to 0.98, between the estimated and true model risk measures. Particu-
larly the technique based on an optimization window 7, = 500 and a model risk
evaluation window n; = 250 is highly consistent with the true model risk mea-
sure, and can explain 65% of the true model risk on average across the models.
We examine the coherence properties of a reasonable measure of model risk for

our proposed technique, and find that the required properties are satisfied.
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In an empirical study, we explore the effect of different volatility proxies (the
squared return and the 5-min realized variance, respectively) on the proposed
QLIKE-based model risk measures, concluding that the model risk measure using
the squared return as volatility proxy generally produces a higher level of model
risk for the badly fitting models (the RiskMetrics method, RW1000 and the ARCH
models), compared with the model risk measure that uses the realized variance.
The level of estimated model risk based on the QLIKE loss function is not sensitive
to the use of the volatility proxy across various models in general. After adjusting
variance estimates for model risk, the degree of predictability of volatility models
has been improved as evidenced by an increase in the values of adjusted R? of the
MZ regressions. In addition, applying our proposed methodology to several asset
classes, we find that the RiskMetrics method, the historical volatility measure
RW1000 and the ARCH-type models are most affected by model risk, and that
the volatility models applied to various assets carry a higher level of model risk
during stressed market states than in normal market states, as expected. We also
show that model misspecification risk generally plays a more dominant role than

parameter estimation risk.

1.3 Original Contributions

The model-dependent estimates of market risk models or univariate volatility

models are undoubtedly affected by the model risk of these models per se. With
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the growing awareness of model risk management, measuring the magnitude of
model risk becomes essential but challenging. This thesis, consisting of three
main chapters, contributes to quantifying the model risk of common models in the
context of standard market risk measures (VaR and ES) and volatility forecasting.

(1) Firstly, the original contributions of estimating ES model risk include:
e we derive the theoretical formulae for the biases of ES due to estimation and
misspecification risk, as well as for the corrections of ES;
e we introduce a backtesting-based correction methodology for ES, and we provide
corrections for ES model risk;
e we consider the desirable coherence properties of a measure of risk for our
proposed method, via simulations;
e we consider the impact of VaR model risk on the model risk of ES;
e we illustrate the backtesting-based correction methodology using Monte Carlo
simulations and an empirical analysis on different asset classes.

(2) Secondly, the original contributions of estimating the joint (VaR, ES)
model risk of risk models include:
e we link model risk to the F'Z class, showing the sensitivity of model ranking to
the F'Z class in the presence of model risk;
e we propose a general ['Z scoring function-based model risk estimation method-
ology to estimate the joint (VaR, ES) model risk and the ES model risk;
e we verify the measures of joint model risk and ES model risk via simulations;

e we examine the coherence properties of a reasonable measure of risk for the
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aforementioned measures via simulations;
e we apply this methodology to several asset classes and across various models;
e we show that adjusting for model risk has a positive effect on backtesting;
e we compare the two major model risk components, estimation risk and mis-
specification risk, of market risk models.

(3) Thirdly, the original contributions of estimating the model risk of univari-
ate volatility models include:
e we develop a model risk estimation methodology for volatility estimates based
on scoring functions;
e we recommend a model risk estimation method based on the QLIKE loss func-
tion using an additive structure, through a simulation analysis;
e we investigate the desirable coherence properties of a measure of risk for our
proposed technique via simulations;
e we apply the QLIKE-based model risk estimation method to different asset
classes and across various models;
e we consider the effect of volatility proxy on our proposed method empirically;
e we show that the efficiency of volatility models can be improved after adjusting
variance estimates for model risk as evidenced by an increase in the adjusted R?
of the MZ regressions;
e we decompose model risk into estimation risk and misspecification risk across
various models, and we reinforce the reliability of the proposed technique via

panel regressions of model risk components as endogenous variable.
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1.4 Outline of the Thesis

The rest of this thesis is organized as follows: Chapter [2] focuses on ES model
risk and proposes a backtesting-based correction methodology for ES; Chapter
introduces a scoring function-based model risk estimation method to quantify
the joint (VaR, ES) model risk and the individual ES model risk, of market risk
models; Chapter 4| develops a model risk estimation methodology for volatility
estimates, considering the choice of scoring function and volatility proxy. Chapter
summarizes the main findings and discusses further research that builds on the
findings presented in this thesis.

For a better reading experience, we make each chapter self-contained. As
such, we (re)introduce variables and abbreviations in each chapter. Whenever

possible, we endeavour to follow consistent notations throughout this thesis.

Notes

!Noticeably, some studies use the term model risk for model misspecification risk; see e.g.
Escanciano and Olmo| (2010al). To avoid any confusion throughout this thesis, we distinguish
between model risk and model misspecification risk; the former refers to the total model risk,

while the latter refers to the component misspecification risk.



Chapter 2

Model Risk of Expected Shortfall

2.1 Introduction

For risk forecasts like Value-at-Risk (VaR) and Expected Shortfall (ES)!, the
forecasting process often involves sophisticated models. The model itself is a
source of risk in getting inadequate risk estimates, so assessing the model risk of
risk measures becomes vital as could be seen during the global financial crisis when
the pitfalls of inadequate modelling were revealed. Also, the Basel Committee
(2012) advocates the use of the 2.5% ES as a replacement for the 1% VaR that has
been popular for many years but has been highly debatable for its underestimation
of risk.

Though risk measures are gaining popularity, a concern about the model risk
of risk estimation arises. Based on a strand of literature, the model risk of risk

measures can be owed to the misspecification of the underlying model (Cont)

13
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20006)), the inaccuracy of parameter estimation (Berkowitz and Obrien, 2002)), or
the use of inappropriate models (Danielsson et al., [2016; |Alexander and Sarabial,
2012). As such, Kerkhof et al.| (2010) decompose model risk into estimation risk,
misspecification risk and identification risk?.

To address these different sources of model risk, several inspiring studies look
into the quantification of VaR model risk followed by the adjustments of VaR
estimates. One of the earliest works is Hartz et al. (2006)), considering estima-
tion error only, where the size of adjustments is based on a data-driven method.
Alexander and Sarabia (2012) propose to quantify VaR model risk and correct
VaR estimates for estimation and specification errors mainly based on probability
shifting. Using Taylor’s expansion, Barrieu and Ravanelli (2015)) derive the up-
per bound of the VaR adjustments, only taking specification error into account,
whilst |[Farkas et al. (2016)) derive confidence intervals for VaR and Median Short-
fall and propose a test for model validation based on extreme losses. |Danielsson
et al.| (2016) argue that the VaR model risk is significant during the crisis periods
but negligible during the calm periods, computing model risk as the ratio of the
highest VaR to the lowest VaR across all the models considered. However, this
way of estimating VaR model risk is on a relative scale. It has been observed
that model risk affects test statistics and so hypothesis testing (West, 1996; Es-
canciano and Olmo, 2010a))3. To take the effect of model risk of risk estimates
into account, (1) an approach is to modify the test statistics (West|, [1996); (2)

an alternative is to modify the risk estimates, which can be carried out in two
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different ways: (2.1) based on specific distances as in Kellner et al.| (2016) and
Huggenberger et al.| (2018) or (2.2) based on backtests. |[Kerkhof et al.| (2010)
make absolute corrections to VaR forecasts based on regulatory backtesting mea-
sures. Similarly, [Boucher et al. (2014]) suggest a correction for VaR model risk,
which ensures various VaR backtests are passed. These studies link model error
and statistical testing, and show how backtesting can give corrections for model
estimates®. Whilst not perfect, such a methodology can be a practical tool to
improve risk estimates and provide a proxy for model risk. With the growing
literature on ES backtesting (see selected ES backtests in Table Appendix
, measuring the model risk of ES has become plausible.

Figure [2.1.1]shows the disagreement between the daily historical VaR and ES
with significance levels 1% and 2.5%, repectively, based on the DJIA index (Dow
Jones Industrial Average index) daily returns from 28/12/1903 to 23/05/2017.
During the crisis periods, the difference between the historical ES and VaR be-
comes wider and more positive, which supports the replacement of the VaR with
the ES measure; nevertheless, the clustering of exceptions when ES is violated is
still noticeable. In other words, the historical ES does not react to adverse changes
immediately when the market returns worsen, and also it does not immediately
adjust when the market apparently goes back to normal.

Another example is around the 2008 financial crisis, presented in Figure
which shows the peaked-over-ES (o = 2.5%) and three tiers of corrections (la-

belled as #1, #2 and #3 on the right-hand side) made to the daily historical ES



16

2.1. Introduction

"§29DWISD YS1L Y] 2INdw0d 03 mopuwn bu]0L 4Dfi-Un0f D SN A YDA [DILLOISWY Y5 ] Y} PUD SH DILOISLY
9% GG Y] UFIMIIQ 2oudL[ftp Yy smoys jpund 4mo] Y1 L T108/G0/6¢ 01 §061/E1/8¢ woif (%G = D) §9IpUILYSI G [DILLOISIY
fippp ayp puv (Y1 = ©) sagwgss YA [0oL0sYy fipeop 2y ‘Suungas fippp Tapur YIr oY) smoys aunbrf swyy fo jpund uaddn oy,

0TO0C 000¢ 066T 086T 0461 096T 0S6T ov6T 0€6T 0c6T 0T6T

¢0'0-
%%E%g% 0
, , , , , , , , , , 200
0T0C 000¢ 066T 086T 0.6T 096T 0S6T 06T 0€6T 0¢6T 0T6T
;mm_ [edLI0ISIH %S HeA [edU0ISIH 9%T — suimal Ajred , , , . ,m , , 1o

d

VI uo paseq ‘S [ed1I0ISIY %4G°G PUR YA [ed1I0ISIY %T :1°T°g 2anSig



17

2.1. Introduction

(%% =)
SH [oonLogsyy fippop gsvoaLof oy pasn st mopuwn busnows uvafi-ou))  600/T0/T0 03 L00Z/T0/T0 Woif Tapui Y[ 2y3 uo pasng
‘s99DWY59 G JDI140381Y APDp U0f H# puD ZH ‘T# SO Pa]1aq] sqpudwIsnipD [0 $491) 2941) PUD G -4200-paYyvad 2Yy3 sjusaLd aunbif siy T

s3 [esuoisiH %5z 60/10 80/0T 80/L0 80/70 80/T0 ,0/0T L0/L0 L0/v0
Buijjol reak-auo g o R I I I % I o I T 0
T# S3 %52 paisnipy >
Z# S3 %S¢ pasnipy 100
€# S3 %G'Z paisnipy S o
L ' Jzo00
+ - €00
%0
: 700

VIf uo paseq ‘sjuawisnlpe pue g-1sA0-payesd :g'1°g 2InSLg



2.1. Introduction 18

estimates (o = 2.5%), based on a one-year rolling window. Adjustment #1 with
a magnitude of 0.005 (about 18% in relative terms) added to the daily ES esti-
mates can avoid most of the exceptions that occur during this crisis. The higher
the adjustment level (#2 and #3), the more the protection from extreme losses,
but even an adjustment of 0.015 (adjustment #3) still has several exceptions.
However, too much protection is not favorable to risk managers, implying that
effective adjustments (not too large or too small) for ES estimates are needed to
cover for model risk. In this chapter, we mainly focus on several ES backtests
with respect to the following properties® of a desirable ES forecast: one refer-
ring to the expected number of exceptions, one regarding the absence of violation
clustering, and one about the appropriate size of exceptions.

To the best of our knowledge, we are the first to quantify ES model risk as a
correction needed to pass various ES backtests (Du and Escanciano|, 2016}, |Acerbi
and Szekely, 2014; McNeil and Frey, 2000), and examine whether our chosen
measures of model risk satisfy certain desirable properties which would facilitate
the regulations concerning these measures. Also, we compare the correction for
the model risk of VaR (a = 1%) with that for ES model risk (v = 2.5%) based on
different models and different assets, concluding that the 2.5% ES is less affected
by model risk than the 1% VaR. Regarding the substantial impact of VaR on
ES in terms of the ES calculations and the ES backtesting, if VaR model risk is
accommodated for, then the correction made to ES forecasts reduces by 50% on

average.
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The structure of Chapter [2| is as follows: Section analyzes the sources
of ES model risk focusing on estimation and specification errors, and performs
Monte Carlo simulations to quantify them; Section proposes a backtesting-
based correction methodology for ES model risk, considers the properties of our
chosen measures of model risk and also investigates the impact of VaR model risk
on the model risk of ES; Section presents the empirical study and Section

concludes.

2.2 Model risk of Expected Shortfall

2.2.1 Sources of model risk

We first establish a general scheme (see Figure in which the sources of model
risk of risk estimates are shown. Consider a portfolio affected by risk factors, and
the goal is to compute risk estimates such as VaR and ES. The first step is the
identification of risk factors, and this process is affected by identification risk,
which arises when some risk factors are not identified, with a very high risk of
producing inaccurate risk estimates. The next step is the specification of risk
factor models which, again, will have a large effect on the estimation of risk.
This is followed by the estimation of the risk factor model (this, in our view, has
a medium effect on the risk estimate). In step 3, the relationship between the
portfolio P&L and the risk factors is considered and the formulation of this model

will have a high effect on the estimation of the risk. The estimation of this will
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have a medium effect on the risk estimation. Step 4 links the risk estimation with
the dependency of the P&L series on the risk factors.

For example, when computing the VaR of a portfolio of derivatives, step 1
would identify the sources of risk, step 2 would specify and estimate the models
describing these risk factors (underlying asset returns most importantly), step 3
would model the P&L of the portfolio as a function of the risk factors, and in
step 4 the risk model would transform P&L values into risk estimates.

The diagram shows that the main causes of model risk of risk estimates are
(1) identification error, (2) model estimation error (for the risk factor model, the
P&L model or the risk model), which arises from the estimation of the parameters
of the model and (3) model specification error (for the risk factor model, the
P&L model or the risk model), which arises when the true model is not known.
Other sources of model risk that may give wrong risk estimates are, for example,

granularity error, measurement error and liquidity risk (Boucher et al., 2014]).

2.2.2 Bias and correction of Expected Shortfall

Most academic research on the adequacy of risk models mainly focuses on two of
the sources of model risk: estimation error and specification error. Referring to
Boucher et al.| (2014), the theoretical results about the two sources of VaR model
risk are presented in Appendix In a similar vein, we investigate the impact

of the earlier mentioned two errors on the ES estimates, deriving the theoretical
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Figure 2.2.1: Risk estimation process

[Input: financial data ]—

P
Step 1:

a) Risk factor identification (H)

Step 2:

a) Risk factor model specification (H)
b) Risk factor model estimation (M)
Step 3:

a) P&L model specification (H)

b) P&L model estimation (M)

Step 4:

a) Risk model specification (H)

b) Risk model estimation (M)

~

—»[Output: risk estimates ]

This diagram shows the sources of model risk of risk estimates. H and M represent high
and medium impacts on risk estimates, respectively.

formulae for estimation and specification errors, as well as correction of ES. VaR?,

for a given distribution function I’ and a given significance level «;, is defined as:

VaR(a) = —inf{q: Fi(q) > a},

(2.2.1)

where ¢ denotes the quantile of the cumulative distribution F. ES, as an abso-

lute downside risk measure, measures the average losses exceeding VaR, taking

extreme losses into account; it is given by:

(2.2.2)
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Estimation bias of Expected Shortfall

Assuming that the data generating process (DGP), a model with a cumulative
distribution F' for the returns, is known and the true parameter values (6p) of
this ‘true’ model are also known, the theoretical VaR, denoted by ThVaR (6, «)
and the theoretical ES, denoted by ThES(6y, ), both at a significance level «,
can be computed as:

ThVaR(0y,a) = —q = —F* (2.2.3)

[0}

ThES(a) = / ThV aR(fo, u)du (2.2.4)
0

(0%

Now, we assume that the DGP is known, but the parameter values are not
known. The estimated VaR in this case is denoted by VaR(éo, «), where 0, is an
estimate of #y. The relationship between the theoretical VaR and the estimated
VaR is:

ThV aR(0, ) = VaR(0y, o) + bias(6y, 6, a) (2.2.5)

We also have that:
ThV aR(6y, ) — E(VaR(0y, o)) = E(bias(0y, by, ) (2.2.6)

where E[bias(0y, 0y, a)] denotes the mean bias of the estimated VaR from the
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theoretical VaR as a result of model estimation error. Based on this, we can
write the estimation bias of ES(fy, «), and we have that

ThES (6o, 0) — E[ES(fy, a)] = ~ / " Elbias(8o, fo, u)|du, (2.2.7)

«

Ideally, correcting for the estimation bias, the ES estimate, denoted by ES (ég, a),

can be improved as below:

ES(0y, o) = ES(0y, o) + ! / E[bias(6y, 0y, u)]du (2.2.8)
a Jo

Specification and estimation biases of Expected Shortfall

However, in most cases the 'true’ DGP is not known, and the returns are assumed
to follow a different model, given a cumulative distribution (ﬁ ) for the returns
with estimated parameter values él, where 6, and él can have different dimensions

depending on the models used and their values are expected to be different. This

gives the following value for the estimated VaR:

~

VaR(0;,0) = —¢F = —F! (2.2.9)

[e7

The relationship between the true VaR and the estimated VaR is given as:

ThVaR(0y, o) = VaR(6y, o) + bias(by, 01, 61, ) (2.2.10)
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where 0, and 6; have the same dimension under the specified model, but 6,
denotes the true parameter values different from the estimated parameter values

of 6. Similarly:
ThV aR (6, ) — E(VaR(0y, o)) = E(bias(y, 01,01, ) (2.2.11)

where E[bias(6y, 01,61, )] denotes the mean bias of the estimated VaR from the
theoretical VaR as a result of model specification and estimation errors. Accord-
ing to equation , the mean estimation and specification biases of ES can
be formulated as below:

N 1 @ A
ThES (6, ) —E[ES(61,a)] = a/ E[bias(0, 61,01, v)|dv (2.2.12)
0

Correcting for these biases, the estimated ES, denoted by E.S (él, «), can be im-
proved as:

ESSE(d, a) = BS(y, a) + + / Elbias(f, 01, by, v)|dv (2.2.13)
0

«

In practice, the choice of the risk model for computing VaR and ES forecasts
is usually subjective, along with specification errors (and other sources of model
risk). In Appendix 2.C| we give a review of risk forecasting models used in this

chapter.
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2.2.3 Monte Carlo simulations

In this section, assume a simplified risk estimation process (Figure so that
only one risk factor exists. Thus, the identification risk and the P&L model
specification and estimation risks are not modelled, and we are left with the
specification and estimation risks for the risk factor model and, consequently,
for the risk model, namely steps 2 and 4. Following the theoretical formulae for
estimation and specification errors of the ES estimates, Monte Carlo simulations
are implemented to investigate the impacts of these two errors on the estimated
ES.

We simulate the daily return series assuming a model, thus knowing the theo-
retical ES. Then, the parameters are estimated using the same model as specified
to generate the daily returns, thus giving the value of the estimation bias of ES,
as in equation ([2.2.7)). We also forecast ES based on other models to examine the
values of joint estimation and specification biases of ES, as in equation ([2.2.12)).

In our setup’, a GARCH(1,1) model with normal disturbances (GARCH(1,1)-

N) is assumed to be the ‘true’ data generating process, given by:

reo= e (2.2.14)
Et = Ot Zty, 2t~ N(O, ].) (2215)

o’ = w+ae + Bol, (2.2.16)
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Using market data, we first estimate the parameters® of this model. Next, we
simulate 1,000 paths of 1,000 daily returns, compute one-step ahead ES forecasts
under several different models and compare these forecasts with the theoretical
ES. The purpose of Monte Carlo simulations is to compute the perfect corrections
for the model risk of ES forecasts. The second and third columns in Table 2.2.1]
present the annualized ES forecasts and theoretical ES at 5%, 2.5% and 1%.
We compare the theoretical ES given by the data generating process with the
estimated ES based on the same specification in Panel A of Table [2.2.1], showing
that the mean estimation bias is close to 0 for the 5%, 2.5% and 1% ES estimates.
Also, the estimation bias can be reduced by increasing the size of the estimation
period as suggested by Du and Escanciano| (2016). The standard error of the bias
decreases when « increases, as expected. In Panel B, the mean specification and
estimation biases are computed from the theoretical ES and the historical ES. The
negative values of the bias show that the estimated ES is more conservative than
the theoretical ES, whilst the positive values of the bias refer to an estimated ES
lower than the theoretical ES. Panel C examines the specification and estimation
biases of the Gaussian Normal ES estimates. In this case, the Gaussian Normal
ES estimates are more conservative than the theoretical ES. The specification
and estimation biases of the ES estimates computed from EWMA are positive
as shown in Panel D, which requires a positive adjustment to be added to the

EWMA ES estimates.
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The specification and estimation biases in Panel B, C and D are much higher
than the estimation bias in Panel A in absolute value, indicating that the spec-
ification error has a bigger importance than the estimation error. Overall, our
results indicate that an adjustment is needed to correct for the model risk of ES

estimates.

2.3 Measuring ES model risk

2.3.1 Backtesting-based correction methodology for ES

If a data generating process is known, then it is straightforward to compute the
model risk of ES, as shown in Table In a realistic setup, the ‘true’ model
is unknown, so it is impossible to measure model risk directly. By correcting the
estimated ES and forcing it to pass backtests, model risk is not broken into its
components, but the correction would be for all the types of model risk consid-
ered jointly. In this way, the backtesting-based correction methodology for ES,
proposed in this chapter, provides corrections for all the sources of ES model risk.

Comparing the ex-ante forecasted ES with the ex-post realizations of returns,
the accuracy of ES estimates is examined via backtesting. For a given backtest,
we can compute the correction needed for the ES forecasts made by a risk model,

M;, so that the adjusted ES passes this backtest. The value of ES corrected via
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backtesting, ESZ%, is written as:

Esﬁ(éla a) = Esj(ély a) + CZ]' (2.3.1)

The minimum correction is given by:

i, = min{Ci,j\ESj,t(él, a) + C; ; passes the ith backtest,t =1,...,T,C;; > 0}

where {ES;,(0,),t = 1,...,T} denotes the forecasted ES made using model M,;
during the period from 1 to 7. A correction, C;; = C’Lj(ﬁo,@l,él,a), is needed
to be made so that the sth backtest of the ES estimates is passed successfully;
of these, C7; is the minimum correction required to pass the ith ES backtest. In
this chapter, ¢ € {1,2,3,4}; Cy;, Cs;, and Cs ; refer to the correction required to
pass the unconditional coverage test for ES and the conditional coverage test for
ES introduced by Du and Escanciano| (2016]), and the Z, test proposed by |Acerbi
and Szekely| (2014), respectively. Additionally, the exceedance residual test by
McNeil and Frey| (2000)), associated with Cy ;, is an alternative to the Z, test. By
learning from past mistakes, we can find the appropriate correction made to the
ES forecasts, through which the model risk of ES forecasts can be quantified.

In this chapter, we define model risk as MR! : R" x Viy — R*, where
MR ((Xoy), M;) refers to the maximum of the optimal corrections Cj; made to

ES forecasts of a series of empirical observations Xy ; during the periodt =1, ..., T,
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which ensures that certain backtests I are passed. V), represents a set of models
with M; € V. This definition can be transformed into the following definition

of model risk MR : R® x R® x R* — R™:
MR (Xo1), (v30),(e12)) = max(C). (23.2)

In this notation, X, v, and e denote the empirical observations and, respec-
tively, the one-step ahead VaR and ES forecasts made for time ¢. The subscripts
j and ¢ refer to the model j used to build risk forecasts and the ith backtest,
accordingly. The superscript I refers to a set of ES backtests used to make cor-
rections for ES model risk. For example, if I = {1,2,3}, we find the maximum
correction needed to pass the unconditional coverage test (UCgg test), the condi-
tional coverage test (C'Cgg test) and the Z, test jointly. Likewise, we also consider
I= {12} or {1,2,3,4}. Clearly, this representation of model risk shows that it
is affected by the data and the risk model used to make VaR and ES forecasts.
In the following, for simplification we use the notation X = (Xo,),v; = (vj,),

e; = (ej1), and MR' = MR given I

2.3.2 Backtesting framework for ES

Backtesting, as a way of model validation, checks whether ES forecasts satisfy
certain desirable criteria. Here we consider that a good ES forecast should

have an appropriate frequency of exceptions, absence of volatility clustering in
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the tail and a suitable magnitude of the violations. Regarding these attractive
features, we mainly implement the unconditional/conditional coverage test for
ES (UCgs/CCEgs test), and the Z test (Du and Escancianol 2016; |Acerbi and

Szekelyl 2014).

Exception frequency test

Based on the seminal work of (Kupiec,|1995), in which the unconditional coverage
test (UCy g test) for VaR considers the number of exceptions, Du and Escanciano
(2016) investigate the cumulation of violations and develop an unconditional cov-
erage test statistic for ES. The estimated cumulative violations I:It(oz) are defined
as:

Hi(a) = a(oz — ) 1(u < @) (2.3.3)

where 4, is the estimated probability level corresponding to the daily returns (r;)
in the estimated distribution (F}) with the estimated parameters (6;), and Q,_;

denotes all the information available until ¢ — 1.
Gy = F(ry, Q_q,0,) (2.3.4)
The null hypothesis of the unconditional coverage test for ES, Hj, is given by:

H, :E|H(a,6) —% =0 (2.3.5)
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Hence, the simple t-test statistic? and its distribution is:

Vi (Un S, Hile) —af2)
Ugps = ~ N(0,1) (2.3.6)
a(1/3 — a/4)

Exception frequency and independence test

The conditional coverage test (CCy,r test) for VaR is a very popular formal
backtesting measure (Christoffersen, |1998)). Inspired by this, |Du and Escanciano
(2016)) propose a conditional coverage test for ES and give its test statistic. The

null hypothesis of the conditional coverage test for ES, H,, is given by:
!
Hy E [Ht(a, 0y) — §|Qt_1] =0 (2.3.7)

Du and Escanciano| propose a general test statistic to test the mth-order depen-
dence of the violations, following a Chi-squared distribution with m degrees of
freedom. In the present context, the first order dependence of the violations is
considered, so the test statistic follows x*(1). During the evaluation period from

t =1 to t = n, the basic test statistic’, Cgg(1), is written as:

i (S0) — /(i) —a/2))
CES(l) = (n — 1)2 ) R . 7 ~ X (1) (238)
(i (@) = a/2)(fia) = af2))

Escanciano and Olmo (2010b)) point out that the VaR (and correspondingly,

ES) backtesting procedure may not be convincing enough due to estimation risk
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and propose a robust backtest. In spite of that, Du and Escanciano| (2016) agree
with [Escanciano and Olmo, (2010b) that estimation risk can be ignored and the
basic test statistic is robust enough against the alternative hypothesis if the es-
timation period is much larger than the evaluation period. In this context, the
estimation period (1,000) we use is much larger than the evaluation period (250),

so the robust test statistic is not considered.

Exception frequency and magnitude test

Acerbi and Szekely (2014]) directly backtest ES by using the test statistic (Z,

test):

T
il

Zo= —— bl
—1 TOéESayt

+1 (2.3.9)

I;, an indicator function, is equal to 1 when the forecasted VaR is violated, oth-
erwise, 0. The Z; test is non-parametric and only needs the magnitude of the
VaR violations (7:1;) and the predicted ES (ES,.), thus easily implemented and
considered a joint backtest of VaR and ES forecasts. The Z, score at a certain
significance level can be determined numerically based on the simulated distribu-
tion of Z,. If the test statistic is smaller than the Z, score!’, the model is rejected.
The authors also demonstrate that there is no need to do Monte Carlo simulations
to store the predictive distributions due to the stability of the p-values of the Z,
test statistic across different distribution types. |Clift et al. (2016)) also support

this test statistic (Z3) by comparing some existing backtesting approaches for ES.
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In the Z, test, ES is jointly backtested in terms of the frequency and the mag-
nitude of VaR exceptions. Alternatively, we also use a tail losses based backtest
for ES, proposed by McNeil and Frey| (2000), only taking into account the size of
exceptions. The exceedance residual (er;), conditional on the VaR being violated
(L), is given below:

Ery = (Tt + ESa,t) . ]t (2310)

here r; denotes the return at time ¢, and ES,; represents the forecasted ES for
time t. The null hypothesis of the backtest is that the exceedance residuals are
on average equal to zero against the alternative that their mean is greater than

zero. The p-value used for this one-sided bootstrapped test is 0.05.

2.3.3 Properties of measures of model risk

We introduce some basic notations and assumptions: we assume a 7.v. A defined
on a probability space (Q, F, P), and F4 the associated distribution function. If
Fy = Fpg, the cumulative distributions associated with A and B are considered
the same and we write A ~ B. In the same fashion, we will write A ~ F, if
Fy = F. A measure of risk is a map p : V, = R, defined on some space of r.v.
V.

Artzner et al.| (1999) propose four desirable properties of measures of risk
(market and nonmarket risks), and argue that effectively regulated measures of

risk should satisfy the four properties stated below:
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1) Monotonicity: A,B € V,, A< B = p(A) > p(B).

2) Translation invariance: A € V,,a € R = p(A+a) = p(A) — a.

3) Subadditivity: A,B,A+ B €V, = p(A+ B) < p(A) + p(B).

4) Positive homogeneity: A€V, h>0,h-AecV,=ph-A)=nh-p(A).

ES is considered coherent as a result of satisfying the above four properties,
whilst VaR is not due to the lack of subadditivity (Acerbi and Tasche, 2002). As
model risk is becoming essential from a regulatory point of view, we are examining
whether the above properties hold for our proposed measure of model risk of ES.

Regarding this measure of model risk, the four desirable properties of risk
measures mentioned above are considered below:

1. Monotonicity:

la) For a given model M;, and two data series X,Y with X < Y, it is

desirable to have that M R(X,v;,e;) > MR(Y,v;,e;).

1b) For a data series X, models My, My € Vi, v1 < vg,e1 < ey, it is desirable

to have that M R(X,vy,e1) > MR(X,vq,e3).

The property fa) states that the risk estimates (v;,e;) of model M; that is

applied to the data series Y are not able to accommodate for bigger losses

associated with the data series X and thus should have a higher model risk,
which is in line with the argument of Danielsson and Zhou| (2017). The prop-

erty 1b) is a natural requirement that, for a given return series, models that
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forecast low values of VaR and ES risk estimates should carry a higher model
risk (and require higher corrections).
2. Translation invariance:

2a) For a given model M;, a series of data X, and a constant a < vj, it is
desirable to have that M R(X + a,v; —a,e; —a) = MR(X,vj,e;).

2b) For a given model M;, a series of data X, and a constant a € R, it is
desirable to have that M R(X + a,vj,e;) > MR(X,v;,e;) — a.

2c) For a given model M;, a series of data X, and a constant a € R, it is
desirable to have that M R(X,v; + a,e; +a) > MR(X,v;,e;) — a.

Generally, when shifting the observations with a constant and lowering the

values of VaR and ES forecasts by the same amount, the model risk is expected

to stay constant in the case of 2a). In 2b) and 2c¢), if the real data or the risk

forecasts are shifted with a positive constant (a), the model risk would be

larger than (or equal with) the difference between the previous model risk and

the size of the shift.

3. Subadditivity

3a) For a given model M;, (vy, e1;), (va;, €25) and (vi42, €142,;) are estimates
based on X, Xy and X; + Xs, it is desirable to have that:
MR(X; + Xo, V1425, €142) < MR(Xq,v15, e15) + MR(Xa, v9), €25).

The property 3a) is desirable, since we expect that the model risk is smaller in

a diversified portfolio than the sum of the model risks of the individual assets.

However, the desirability of subadditivity for measures of risk is an ongoing
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discussion. Cont et al.| (2010) point out that subadditivity and statistical
robustness are exclusive for measure of risks, and that robustness should be a
concern to the regulators. Also, Kratschmer et al.| (2012} 2014} 2015) argue that
robustness may not be necessary in a risk management context. Subadditivity,
expressed in this format, is not too important because we rarely use the same
model for two different data sets.
4. Positive homogeneity
4a) For a given model M;, and a data series X, h > 0,h - X € Vjy, we have
that MR(h- X,h-v;,h-e;) =h- MR(X,vj,¢e;).
The property 4a) states that the change in the size of the investment is con-

sistent with the change in the size of model risk.

Property: Assuming model risk is computed as in equation , the following

properties will hold:

(1) For I = {1,2}, properties 1a), 1b), 2a), 2b), 2¢) and 4a,).

(2) For I ={1,2,58}, properties 1a), 1b), 2a) and 4a).
We mainly consider two measures of ES model risk: (1) When we compute the
model risk of ES in terms of the UCgg and CCgg tests (/={1,2}), allowing for
the frequency and clustering of exceptions, all properties considered above hold,
except for subadditivity; (2) when we compute the model risk of ES in terms of
the UCEgs, CCgs and Zs tests (I ={1,2,3}), allowing for the frequency, clustering

and size of exceptions, 2b) and 2¢) of translation invariance and subadditivity are
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not satisfied, whilst the rest still hold. Due to the nature of the Z, test, translation
invariance is not guaranteed. This is not necessarily a problem, because shifting

data or risk estimates with a constant is not encountered routinely.

Next, let’s look at subadditivity in more detail and we are going to give an
example why it is not always satisfied for MR/=123}  Inheriting an example
from Danielsson et al. (2013), we consider two independent assets, X; and Xo,

but with the same distribution, specified as:

0 with a probability 0.991
X =e+n, e~IIDN(0,1), n= (2.3.11)

—10 with a probability 0.009
Based on this, we generate two series of data with 5,000 observations for X; and
X,. Considering the Gaussian Normal or GARCH(1,1)-GPD model used to make
one-step ahead VaR and ES forecasts at different significance levels with a rolling
window of length 1,000, we measure the model risk of ES forecasts based on the
two models by the backtesting-based methodology. Then we compare the model
risk of an equally weighted portfolio of (X; + X5), M RI,, with the sum of model
risks of X; and X,, MRI + M RE, shown in Figure . The upper figure shows
that the model risk of ES of an equally weighted portfolio based on the Gaussian
Normal model is higher than the sum of model risks of ES of the two individual
assets at some significance levels such as 2.5%. One possible explanation for this

is that the Gaussian Normal model is not appropriate to make ES forecasts at
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these alpha levels. In the lower figure where the model used offers a better fit,
the model risk of the portfolio is much lower than the sum of model risks based
on the GARCH(1,1)-GPD model. Therefore, subadditivity is not guaranteed for
our measure of model risk. However, in our applications, similar to the second

part of Figure [2.3.1] subadditivity is satisfied when the model fits the data well.

2.3.4 The impact of VaR model risk on the model risk of

ES

The backtesting-based correction methodology for ES shows that the correction
made to the ES forecasts can be regarded as a barometer of ES model risk. VaR
has been an indispensable part of ES calculations and the ES bakctests used in
this chapter. For instance, the Z, test (Acerbi and Szekelyl [2014)) is commonly
considered as a joint backtest of VaR and ES. For this reason, it is of much interest
to explore to what extent the model risk of VaR is transferred to the model risk of
ES. On the one hand, ES calculations may be affected by the model risk of VaR,
since the inaccuracy of VaR estimates is carried over to the ES estimates as seen
in equation (2.2.2). On the other hand, the wrong VaR estimates may have an
impact on backtesting, thus leading to inappropriate corrections of ES estimates.
As such, the measurement of the ES correction required to pass a backtest is likely
to be affected by VaR model risk. To address this, as an additional exercise, we

compute the optimal correction of VaR for model risk (estimated at the same
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significance level as the corresponding ES) as in Boucher et al.| (2014)''. Then
we use the corrected VaR for ES calculation, estimating ES corrected for VaR
model risk. Consequently, based on the backtesting-based correction framework,
the optimal correction made to the ES, corrected for VaR model risk, is gauged

as a measurement of ES model risk alone.

2.3.5 Monte Carlo simulations of ES model risk

According to the backtesting-based correction methodology for ES, we quantify
ES model risk by passing the aforementioned ES backtests based on Monte Carlo
simulations, where we simulate 5,000 series of 1,000 returns using a GARCH(1,1)-¢

model with model parameters taken from Kratz et al.| (2018]), specified below:

ry =07y,  op =218 x 107% 4 0.109r7 ; + 0.89007_,, (2.3.12)

where Z, follows a standardised Student’s ¢ distribution with 5.06 degrees of
freedom.

We implement several well known models (see details in Appendix for
comparison, such as the Gaussian Normal distribution, the Student’s ¢ distribu-
tion, GARCH(1,1) with normal or standardised Student’s ¢ innovations, GARCH(1,1)-
GPD, EWMA, Cornish-Fisher expansion as well as the historical method.

It is known that ES considers average extreme losses which VaR disregards.

Consequently, it is of interest to investigate the adequacy of ES estimates in
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measuring the size of extreme losses and also quantify ES model risk by passing
the Z5 test inasmuch as the Zy test considers the frequency and magnitude of
exceptions. Table[2.3.T]shows the mean values of the optimal absolute and relative
corrections (in the 3rd and 5th columns) made to the daily ES (o = 2.5%),
estimated by different methods, in order to pass the Z, test without considering
the impact of VaR model risk on the ES calculations and ES backtesting, as
well as the mean values of the absolute and relative optimal correction (in the
4th and 6th columns) made to the daily ES after correcting VaR model risk. In
this simulation study, the data generating process is specified by GARCH(1,1)-
t as in equation . Thus, according to the last two rows in Table [2.3.1
ES estimates are only subject to estimation risk measured by the mean of the
absolute optimal correction, 0.0001, which is much smaller than the mean values
of the optimal corrections associated with the other models, which are different
from the DGP. This shows that misspecification risk plays a crucial role in giving
accurate ES estimates, and also applies when we correct for VaR model risk.
The mean values of the optimal corrections made to the ES estimates generally

decrease after excluding the impact of VaR model risk on ES model risk.

2.4 Empirical Analysis

Based on the same set of models used in the previous section, we evaluate the

backtesting-based correction methodology for ES using the DJIA index from
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Table 2.3.1: Optimal correction for ES based on the 7, test, before and after
correcting VaR

Model Mean ES Abs. C3 Abs. C5 Rel. U5 Rel. C5
(+1072)  (+1072)
Historical 0.062 0.45 0.41 7.1% 6.6%
EWMA 0.046 0.73 0.70 15.7% 14.9%
Gaussian Normal — 0.047 0.91 0.87 19.5%  18.4%
Student’s ¢ 0.060 0.40 0.36 6.6% 6.0%
GARCH(1,1)-N 0.039 0.08 0.08 2.2% 1.9%
Cornish-Fisher 0.097 0.03 0.03 0.3% 0.3%
GARCH(1,1)-GPD 0.046 0.03 0.02 0.7% 0.6%
GARCH(1,1)-¢ 0.045  0.01 0.01 0.3%  0.3%
DGP 0.046 0.00 0.00 0.1% 0.1%

This table presents the mean values of the absolute and relative optimal correction,
obtained by passing Zs test, made to daily ES (o = 2.5% ), estimated by different models.
Based on the DGP (GARCH(1,1) with standardised student’s t disturbances), we first
simulated 5,000 series of 1,000 daily returns. Then ES estimates are obtained by using
different methods with a rolling window of length 1,000. By passing the Za test with
a backtesting window of length 250, the optimal correction made to the daily ES are
calculated. Cs represents the optimal corrections made to ES forecasts required to pass
the Zy test; C3 stands for the optimal corrections made to the corrected ES allowing
for VaR model risk, required to pass the Zs test.
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01/01/1900 to 05/03/2017 (29,486 daily returns in total). Based on equation
, we quantify the model risk of ES as the maximum of minimum correc-
tions required to pass the ES backtests'? and make comparisons among different
models, where backtesting is performed over a year. Moreover, we examine this
measure of model risk based on different asset classes by using the GARCH(1,1)-
GPD model due to its best performance shown in the case of the DJIA index.

Figure [2.4.1] shows the relative corrections made to the daily ES, estimated
at different significance levels, of four models: EWMA, GARCH(1,1)-N, Gaus-
sian Normal, and Student’s ¢, when considering the frequency of the exceptions
(passing the UCgg test). ES forecasts are computed with a four-year moving
window and backtested using the entire sample. The level of relative corrections
is decreasing when alpha is increasing, implying that the ES at a smaller signifi-
cance level may need a larger correction to allow for model risk. Not surprisingly,
the dynamic approaches, GARCH(1,1)-N and EWMA, require smaller corrections
than the two static models in general, though the Student’s ¢ distribution per-
forms better at capturing the fat tails than the EWMA model, for example, at
1% and 1.5% significance levels.

Figure presents the optimal corrections made to the daily ES forecasts
based on various forecasting models with regard to passing the unconditional cov-
erage test for ES (UCgg test), the conditional test for ES (CCgg test) and the
magnitude test (75 test), respectively, where ES is estimated at a 2.5% significance

level using a four-year moving window!'? and the evaluation period for backtesting
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procedures is one year. This figure shows that a series of dynamic adjustments
are needed for the daily ES (o = 2.5%) across all different models, especially
during the crisis periods. This is in line with our expectation of model inade-
quacy in the crisis periods. The smaller the correction, the more accurate the ES
estimates, therefore the less the model risk of the ES forecasting model. Among
the models considered, the historical, EWMA, Gaussian Normal and Student’s
t models require larger corrections than the others when considering the three
backtests jointly, indicating that they have higher model risk than the others.
Particularly, the GARCH(1,1)-GPD performs the best. Also, the Cornish-Fisher
expansion, GARCH(1,1)-GPD, and GARCH(1,1)-¢ models require the smallest
adjustments in order to pass the UCgg, CCgg, and Z, tests, accordingly. Notice-
ably, the ES forecasts made by the non-GARCH models need larger corrections
in order to pass the Z, test that refers to the size of the exceptions, compared
with these corrections required by the UCgs and C'Cgg test particularly during
the 2008 financial crisis. Thus, the GARCH(1,1) models are more able to capture
the extreme losses, as expected.

We present the time taken to arrive at the peak of the optimal corrections in
Figure 2.4.3] for the UCgs, CCrs and Z, tests, which shows that more than a
decade is needed to get the highest correction required to cover for model risk
(also see Appendix , Table for the dates when the highest corrections are
required). When considering the UCgg and C'Cgg tests, the highest values of the

optimal corrections made to the daily ES of various models are achieved before the
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Figure 2.4.2: Dynamic optimal corrections for the daily ES

(a) Based on the UCgg test

011 i I 1 011 ‘ EWMA 1
0.05F istorical b 0.05F 1
VY S S| o l A ‘w’lthHAw o b oA MMM
1925 1950 1975 2000 1925 1950 1975 2000
.l Gaussian Normal | o Students t
0.051 q 0.05F
DJ_MLNMMUMMMMJMXUL . %AA)“MJ \ kn Jadids i A

1925 1950 1975 2000 1925 1950 1975 2000

GARCH(L,1)-N

01r ] 01r GARCH(1,1)t
0.05F 1 0.05F 1
olda s b b t4 aw A olida PVIY. N N DRSS R
1925 1950 1975 2000 1925 1950 1975 2000
o1l Cornish Fisher 1 01l
GARCH(1,1)-GPD
0.05F 1 0.05F 1
0 LA . o LA 0 . b | Ll |
1925 1950 1975 2000 1925 1950 1975 2000
(b) Based on the CCgg test
0.1 1 0.1 1
Historical EWMA
0.051 ﬂ 1 0.051 JI A H 1
oln L b 1 Lo olot o {l i [ IR W |
1925 1950 1975 2000 1925 1950 1975 2000
0.1r h Gaussian Normal 1 0.1r ‘\ Student's t
0.05F 1 0.05F 1
il I bl okl T ST
1925 1950 1975 2000 1925 1950 1975 2000
0.1r J GARCH(1,1)-N 1 0.1 J‘ GARCH(1,1)-t
0.05F 1 0.05F 1
0 - k L il [T A olal | k h,“ dabh 4
1925 1950 1975 2000 1925 1950 1975 2000
0.1r Cornish Fisher q 0.1F GARCH(1,1)-GPD
0.05F ﬂ hm 1 0.05F 1
oln P IV . I ! ola I T n n . o
1925 1950 1975 2000 1925 1950 1975 2000

(c) Based on the Z; test

0.1r Historical J} q 01f EWMA W
0.02’/‘ AAAN)‘\A A n nAArﬂ M ] OIOEW Lok AMA AAI\AV\/\AJ‘\AJ\‘ N /‘

1925 1950 1975 2000 1925 1950 1975 2000

0.1f Gaussian Normal f\ 4 01f Student's t ﬂ 4
002’1« IL.A .J\MR ﬂm \.n/\r\né\/.iﬂ ,Mn.. J‘ ] 002”\ AIJ\‘AJ‘M \Ml ﬁ‘ ,\h"ﬂ'\ﬂ\\\ﬂ. .r j\Hn /‘ :;

1925 1950 1975 2000 1925 1950 1975 2000
01l GARCH(1,1)-N 1 01t GARCH(1,1)t
0.05f , 0.05f
ol i e e e o [l e A o Ca ‘ ‘ ‘
1925 1950 1975 2000 1925 1950 1975 2000
01 Cornish Fisher 1 0-r GARCH(1,1)-GPD
0.05F ’h A\ 1 0.05F
o P I L P S P P T S 1
1925 1950 1975 2000 1925 1950 1975 2000

This figure shows dynamic optimal corrections made to the daily ES estimates
(oo = 2.5%) associated with various models for the DJIA index from 01/01/1900 to
23/05/2017, required to pass the UCgs , CCrs and Zs tests, respectively. The param-
eters are re-estimated using a four-year moving window (1,000 daily returns) and the
evaluation window for backtesting is one year.
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21st century (except that the highest value of the optimal corrections made to the
Student’s ¢ ES is found around 2008, required to pass the UCgg test), indicating
that based on past mistakes we could have avoided the ES failures using these two
tests, for instance, in the 2008 credit crisis. Nevertheless, when considering the
three tests jointly, all the models, except for the GARCH models, find the peak
values of the optimal corrections around 2008. Therefore, the GARCH models are
more favorable than the others in avoiding model risk. This way, we could have
been well prepared against the 2008 financial crisis if the GARCH(1,1) models
were used to make ES forecasts. This is also supported by the results shown in
Appendix 2.D] Figure 2.D.2] which presents extreme optimal corrections of ES
forecasts based on different models, required to pass various backtests.

In Table 2.4.1], we measure the model risk of ES forecasts made by various risk
models for the DJIA index, and compare the model risk of the 2.5% ES with that
of the 1% VaR. Besides, we look into how ES model risk is affected by the model
risk of VaR as discussed in section 2.3.4. Panel A and Panel B give the maximum
and mean values of the absolute and relative optimal corrections to the daily ES
(v = 2.5%) across various risk models with respect to the aforementioned three
backtests and an alternative to the Z, test. The largest absolute corrections
are needed for the Gaussian Normal and Student’s ¢ models, whilst the GARCH
models perform well in capturing extreme losses. With the requirement of passing
the three backtests jointly, the GARCH(1,1)-GPD performs best and requires

a correction of 0.0011 made to the daily ES against model risk. We present
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Figure 2.4.3: Ratio of dynamic optimal correction to the maximum optimal
correction over the entire period
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This figure shows the ratio of dynamic optimal correction over the mazximum of the
optimal corrections over the entire period, in which the optimal correction is made to
the daily ES estimates (o = 2.5% ) associated with various models by passing the UCgg,

CCgs, Zy tests.
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Table 2.4.1: Maximum and mean of optimal corrections for ES and VaR

Model Mean ES (VaR) Max ¢; Max Cy Max C3 Max Cy Mean C; Mean Cy Mean €35 Mean Cy
Panel A: Mazimum and mean of the absolute optimal corrections (¥1072) to the daily ES (a= 2.5%)

Historical 0.031 2.50 9.80 11.86 8.43 0.13 0.20 0.53 0.11
EWMA 0.024 13.55 9.30 12.41 5.55 0.69 0.37 0.74 0.56
Gaussian Normal — 0.025 8.73 9.64 14.33 9.66 0.72 0.42 0.84 0.63
Student’s ¢ 0.030 21.84 12.12 13.15 9.14 1.13 0.38 0.73 0.19
GARCH(1,1)-N 0.023 10.11 9.90 4.08 4.79 0.20 0.08 0.33 0.30
GARCH(1,1)-¢ 0.031 8.69 10.41 1.18 3.93 0.29 0.15 0.01 0.10
Cornish-Fisher 0.050 1.40 7.60 9.75 22.94 0.05 0.14 0.29 0.09
GARCH(1,1)-GPD 0.028 2.95 2.85 3.60 4.09 0.11 0.08 0.09 0.04
Panel B: Mazimum and mean of the relative optimal corrections to the daily ES (a= 2.5%)

Historical 0.031 98.5%  319.0%  436.8% 274.4% 4.5% 6.1% 18.2% 3.9%
EWMA 0.024 318.8% 399.3%  537.5%  295.8%  26.0% 11.6% 30.7% 24.4%
Gaussian Normal  0.025 269.0% 214.3%  672.0% 420.9%  27.4% 13.4% 35.8% 27.5%
Student’s ¢ 0.030 479.8% 241.1%  480.8%  337.1%  39.6% 9.8% 25.5% 7.1%
GARCH(1,1)-N 0.023 560.4% 397.2% 133.7% 296.1%  8.4% 3.4% 13.4% 13.4%
GARCH(1,1)-¢ 0.031 155.0% 317.4%  23.4% 162.0% 8.7% 4.1% 0.2% 3.1%
Cornish-Fisher 0.050 52.2% 240.1% 339.0% 182.1% 1.8% 2.2% 9.8% 1.5%
GARCH(1,1)-GPD  0.028 157.7% 134.4% 121.4% 192.8% 5.8% 3.0% 2.5% 1.5%
Panel C: Mazimum and mean of the relative optimal corrections to the daily VaR (a= 1%)

Historical 0.030 78.2%  280.9% 213.0% 213.0% 2.9% 7.7% 22.6% 22.6%
EWMA 0.024 101.8% 297.8%  313.7% 313.7%  6.3% 10.8% 42.1% 42.1%
Gaussian Normal — 0.024 139.4% 423.5%  305.5%  305.5%  7.3% 14.3% 41.7% 41.7%
Student’s ¢ 0.028 89.1% 366.2%  235.3%  235.3%  4.2% 10.0% 28.1% 28.1%
GARCH(1,1)-N 0.022 50.5%  298.1%  434.9%  434.9%  2.3% 6.5% 63.7% 63.7%
GARCH(1,1)-¢ 0.030 7.1% 173.9% 236.5% 236.5% 0.0% 1.5% 32.0% 32.0%
Cornish-Fisher 0.050 36.6% 180.1%  105.4% 105.4% 0.8% 2.4% 12.6% 12.6%
GARCH(1,1)-GPD  0.027 22.6%  204.9% 337.3% 337.3% 0.2% 2.5% 43.2% 43.2%
Panel D: Mazimum and mean of the relative corrections to the daily ES, corrected for VaR model risk

Historical 0.032 46.4% 248.6%  190.0% 213.8% 2.4% 5.6% 8.3% 4.0%
EWMA 0.026 68.5%  308.6%  229.1%  295.7%  4.5% 4.3% 15.3% 19.7%
Gaussian Normal — 0.026 186.2%  203.1%  249.6%  293.4%  8.0% 4.6% 15.7% 20.9%
Student’s ¢ 0.032 165.2% 132.2% 208.2%  2351% 8.1% 3.3% 10.7% 5.7%
GARCH(1,1)-N 0.023 189.4% 421.1%  119.8%  295.8%  6.0% 2.9% 9.4% 12.4%
GARCH(1,1)-t 0.031 171.3%  317.4% 23.1%  162.0% 0.3% 2.3% 0.2% 3.1%
Cornish-Fisher 0.052 23.6% 176.0% 121.2% 105.9% 1.1% 3.1% 4.2% 1.3%
GARCH(1,1)-GPD  0.028 147.7%  134.4%  99.8% 192.8%  4.2% 3.0% 2.0% 1.9%

This table presents the mazrimum and mean of the absolute and relative optimal cor-
rections made to the daily 2.5% ES, the relative optimal corrections made to the daily
1% VaR, as well as the relative optimal corrections made to the corrected ES after VaR
model risk is accounted for, using different backtests across various models, based on the
DJIA index from 01/01/1900 to 23/05/2017, downloaded from DataStream. Based on
various forecasting models, ES and VaR are forecasted with a four-year moving window
(1,000 daily returns), and the mean ES and VaR are calculated over the entire sample.
In Panel A, B, and D, C1, Co, C3 and C4 denote the optimal corrections made to
the ES estimates, accordingly, required to pass the unconditional coverage test (UCEgg
test), the conditional coverage test (CCgg test), and the magnitude tests (Zo test and
the exceedance residual test). In Panel C, C1, Cy, and C3 (Cy is the same as Cs, to be
consistent with other panels) represent the optimal corrections made to VaR forecasts,
required to pass |Kupied’s unconditional coverage test, |Christoffersen|’s conditional cov-
erage test and |Berkowitz’s magnitude test, respectively. The relative correction is the
ratio of the optimal correction over the average daily ES (or VaR); backtesting is done
over 250 days.
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the relative corrections in Panel B, expressed as the optimal corrections over
the average daily ES. When looking at the three backtests jointly, the EWMA,
Gaussian Normal and Student’s ¢ models face the highest ES model risk with the
mean values of the relative corrections at 30.7%, 35.8%, and 39.6%, respectively,
thereby needing the largest buffers; whilst the GARCH(1,1)-GPD model has the
best performance with a mean value of the relative optimal correction of 5.8%.

Applying the backtesting-based correction methodology to the 1% VaR as
in Boucher et al| (2014)'*, we compute the relative corrections made to one-step
ahead VaR forecasts by passing three VaR backtests!®, reported in Panel C of Ta-
ble[2.4.1} The results show that the Cornish-Fisher expansion and GARCH(1,1)-¢
models outperform the other models, requiring the smallest corrections for VaR
model risk. Comparing Panel B and Panel C, it can be seen that the peak values
of the relative correction required to pass the UC\ .,z and CCy g tests for VaR
estimates are generally (with a few exceptions) smaller than the corresponding
values for ES estimates, whilst the ES estimates require much smaller corrections
than the VaR estimates when considering the Z, test or its alternative. That is,
the ES measure is more able to measure the size of the extreme losses than the
VaR measure, just as Colletaz et al. (2013)) and Danielsson and Zhou| (2017)) ar-
gue. When the three backtests are considered jointly, the 2.5% ES is less affected
by model risk than the 1% VaR.

It is interesting to compare our results with those of |Danielsson and Zhou

(2017). In their Table 1, they show that VaR estimation has a higher bias than ES
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estimation, but a smaller standard error. However, this is based on a simulation
study that focuses on estimation risk. The results presented in the empirical
part of their paper somewhat contradict their theoretical expectation of VaR
being superior to ES, and it can be argued that this is caused by the presence of
specification error. So when only estimation error is considered, VaR is superior to
ES, but when both estimation error and specification error are considered jointly,
our results show that ES outperforms VaR, being less affected by model risk.

Supplementary to the backtesting-based correction methodology for ES, we
examine the impact of VaR model risk on the model risk of ES in Panel D,
Table For all the models, the relative optimal corrections (shown in Panel
D) required to pass the three ES backtests jointly, made to the daily ES after
accommodating for VaR model risk, are smaller than the relative corrections
(shown in Panel B) made to the daily ES when VaR is not corrected for model
risk. Thus, ES is less affected by model risk, when VaR model risk is removed
first. Roughly speaking, the corrections for model risk to the ES estimates reduce
by about 50% if the VaR estimates are corrected for model risk. Also, we find
further evidence in Table[2.D.3] Appendix[2.D]to support the previous result that
GARCH models are less affected by model risk, thus are preferred to make risk
forecasts, when compared with the other models considered.

Additionally, we apply this proposed methodology to different asset classes
(equity, bond and commodity from 31/10/1986 to 07/07/2017), as well as the

FX (USD/GBP) and Microsoft (MSFT) shares (adjusted or non-adjusted for



2.4. Empirical Analysis 53

dividends) from 01/01/1987 to 04/10/2017. Panel A and B of Table re-
port the absolute and relative corrections required for the GARCH(1,1)-GPD ES
(o = 2.5%) of various asset classes'®. The higher the corrections, the more unreli-
able the ES forecasts of the specified model for the data. We find that commodity
ES carries the highest model risk with the highest mean value of the relative op-
timal correction at 5.2% required to pass the three tests jointly, provided that
a GARCH(1,1)-GPD model is used. This is consistent with the statistical prop-
erties of the dataset considered, namely that commodity returns are fat-tailed
and negatively skewed. Interestingly, in Table of Appendix we find
that commodity ES does not provide enough buffer against unfavorable extreme
events in the global financial crisis, since the largest adjustments are needed in
2008 and 2009, suggesting that commodity ES suffers the highest model risk over
the crisis period. However, equity and bond ES could have avoided the failures
around 2008. Panel C shows the maximum and mean of the relative optimal
corrections made to the 1% VaR, obtained by passing the three VaR backtests.
Clearly, for the three different asset classes, the 1% VaR forecasts require much
higher corrections than the 2.5% ES forecasts made by the GARCH(1,1)-GPD
model, thereby carrying a higher model risk by considering the three backtests
jointly as can be seen in the last column.

To get a further insight into the model risk of ES estimates of specific assets,
we conduct a case study on the USD/GBP foreign currency and the MSFT stock

(adjusted or non-adjusted for dividends) listed in the Nasdaq Stock Market. We
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consider that ES is estimated at a significance level of 2.5%, and we have a po-
sition of 1 million dollars in each asset. Table shows the dollar exposures
to the model risk of the GARCH(1,1)-GPD ES when investing in the USD/GBP
exchange rate or by purchasing the Microsoft stock, respectively. The average
2.5% ES of the FX and MSFT (adjusted) investments are $14,291 and $48,879,
accordingly. The mean model risks, considering the three ES backtests jointly,
are $1,371 and $1,350 for FX and MSFT (adjusted). It is inappropriate to con-
sider a certain ES backtest, since the mean of the dollar exposures for FX with
respect to different backtests varies from $107 to $1,371. Also, the non-adjusted
MSFT equity has a much higher model risk than its counterparts, because the
share prices shocked by dividend distributions are more volatile and therefore the
risk model used is more vulnerable in this case. These examples show why it
is necessary for banks to introduce enough protection against model risk when
calculating the risk-based capital requirement introduced in [Basel Committee on
Banking Supervision, (2011]).

Our empirical analysis shows that, when forecasting ES, the GARCH(1,1)
models are preferred, whilst the static models (e.g. the Gaussian Normal and
Student’s ¢t models) and EWMA should be avoided. This is in contrast to the
recommendations of Boucher et al.| (2014]) made for the model risk of VaR, namely
that the EWMA VaR is preferred. Also, the 2.5% ES is the preferred measure of
risk since it is less affected by model risk than the 1% VaR across different models

or based on different assets, especially after VaR model risk is removed first. Using
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Table 2.4.3: Dollar exposures to model risk of the GARCH(1,1)-GPD ES.

Asset Mean ES Max C; Max C;, Max C3 Mean C; Mean Cy; Mean C3
FX USD/GBP 14,291 11,100 3,300 8,700 1,371 107 152
MSFT (adjusted) 48,879 106,400 19,800 62,200 212 646 1,350
MSFT (non-adjusted) 65,200 2,500 3,500 34,700 6 129 3,168

The table presents dollar exposures to the model risk of GARCH(1,1)-GPD ES (a =
2.5%) of the USD/GBP exchange rate and Microsoft equity, based on various ES back-
tests. The USD/GBP spot rate and MSFT share prices from 01/01/1987 to 04/10/2017
are downloaded from DataStream and Bloomberg, respectively. All the outcomes are in
dollar units, computed by using a four-year moving window and a one-year backtesting
period, based on the GARCH(1,1)-GPD model. Cy, Co and Cs3 represent the dollar
values of the optimal corrections required to pass the UCgg, CCgs and Zy tests accord-
ingly, when considering a position of 1 million dollars in the asset specified in the first
column.

the GARCH(1,1)-GPD model to make ES forecasts of various asset classes, we
find that commodity ES carries the highest model risk especially around 2008,

compared to equity and bond ES.

2.5 Conclusions

In this chapter, we propose a practical method to quantify ES model risk based
on ES backtests. Model risk is considered as an optimal correction required to
pass several ES backtests jointly. These ES backtests are tailored to the following
characteristics of ES forecasts: 1) the frequency of exceptions; 2) the absence of
autocorrelations in exceptions; 3) the magnitude of exceptions. We theoretically
examine the desirable properties of model risk from a regulatory perspective.

Considering the UCggs and C'Cgg tests for our chosen measure of model risk,
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all the desirable properties hold, whilst subadditivity is not guaranteed and our
results show that it is generally satisfied by well-fitting models.

We compare the 2.5% ES with the 1% VaR in terms of model risk across
different models and based on different assets. We find that the 2.5% ES is
less affected by model risk than the 1% VaR, needing a smaller correction to
pass the three ES backtests jointly. Besides, commodity ES carries the highest
model risk especially around 2008, compared to equity and bond ES, provided
that the GARCH(1,1)-GPD model is used. Moreover, we consider the impact of
VaR model risk on ES model risk in terms of the ES calculations and the ES
backtests. If VaR model risk is first removed, then ES model risk reduces further
by approximately 50%.

Our results are strengthened when the standard deviations of the corrections
for model risk are considered: the GARCH(1,1) models not only require the
smallest corrections for model risk, but the level of the corrections are the most

stable, when compared to the other models considered in our study.



Appendices

2.A Theoretical analysis of estimation and spec-

ification errors of VaR

Estimation bias and correction of VaR

Based on equation (2.2.5) and (2.2.6]), correcting for the estimation error, the

VaR estimate can be written as:
VaR? 0y, a) = VaR(0y, o) + E(bias(by, 0y, ) (2.A.1)

This tells us that the mean bias of the forecasted VaR from the theoretical VaR

is caused by estimation error.

o8
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Specification and estimation biases and correction of VaR

Based on equation (2.2.10)) and ({2.2.11)), correcting for these biases (specification

and estimation biases), the VaR estimate can be written as:

VaR " (0, 0) = VaR(6y, ) + E(bias(6y, 0y, 61, a)) (2.A.2)

The mean of the estimation and specification biases for VaR can be considered

as a measurement of economic value of the model risk of VaR.

2.B Backtesting measures of VaR and ES
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Table 2.B.1: Selected backtesting methodologies for VaR and ES

VaR backtests

ES backtests

Exception Frequency Tests:
(1)UClyqr test- [Kupiec (]1995[)
(2)data-driven- Escanciano and Pei| (]2012[)

Exception Independence Tests:
(1)independence test-Christoffersen|(1998)
(2)density test- Berkowitz| (2001)

Ezxception Frequency and Independence
Tests:

(1)CClyqr test- |Christoffersen| q1998l)

Exception Frequency Tests:
(1)UCgs test- Du and Escanciano| (2016)

(2)risk map- Colletaz et al.| (2013
(3)traffic light- Moldenhauer and Pitera|
019)

FException Independence Tests:

FException Frequency and Indepen-
dence Tests:

(1)CCpgs test-|Du and Escanciano)|(2016);
\Costanzino and Curran (2015] 2018)

2)dynamic  quantile-Engle
2004);Patton et al.| (2019)
3)multilevel test- Campbell| (2006
4)multilevel test-Leccadito et al.[(2014
5)multinomial test-Kratz et al.|(2018)

and Manganelli|

(
(
(
(
(

—
D
=

two-stage test- |Angelidis and Degiannakis)|
00
Fxception Duration Tests:

1)duration test- |Christoffersen and Pelletier|
00
2)duration-based test- |Berkowitz et al.|(2011)
)JGMM duration-based test- (Candelon et al.|
010

Exception Magnitude Tests:

1

(1)tail losses-
(2)magnitude test

Ezxception Frequency and Magnitude
Tests:

(1risk map- Colletaz et al.|(2013)

(2)quantile regression- (Gaglianone et al.| (]2011])

DO
D

A~ .

™
=

—
w

DO

(2)dynamic quantile- Patton et al.[(2019)

(3)multinomial test-Kratz et al.| (2018);
[Emmer et al.|(2015); (Clift et al.|(2016)

Exception Duration Tests:

Exception Magnitude Tests:

(1)tail losses- Wong,(2008); Christoffersen

(2009); [McNeil and Frey|(2000)

FException Frequency and Magni-
tude Tests:

(1)Z; test-Acerbi and Szekely] (2014)
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2.C Risk forecasting models

In the following, we focus on several commonly discussed models for computing
one-step ahead VaR and ES forecasts (Christoffersen, 2012)) using a rolling window

of length 7 at a significance level «.

Historical Simulation

Among all the models considered in this chapter, Historical Simulation!” is the
simplest and easiest to implement, in which the forecasting of risk estimates is
model free, based on past return data. VaR is computed as the empirical a-
quantile (Q()) of the observed returns Xy, X;,1,..., X;1r_1, and its formulation

is given below

A

VaRH_T = _Qa(Xtth+17-'-7Xt+Tfl)' (201)
ES is the expected value of the returns in the tail, and it is computed as

i=t {Xi<—VaR, .}

Zi:t—i—T—l ]— o )
i=t {Xi<—VaRt+7_}

ES,,. =— (2.C.2)

where [(-) is equal to 1 when the empirical return is smaller than the negative

value of VaR, otherwise 0.
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Gaussian Normal distribution

Simply assuming that the observed returns follow a normal distribution, the one-

step ahead return is 7, = [igyr + 0P, where [i,,, and &,?JFT are mean and

o )
variance of the previous 7 observations Xy, X;i1, ..., X¢1r—1, and ® denotes the

cumulative distribution function of the standard normal distribution. In this case,

we compute VaR{, = as

—

VaR,,, = —fi4r — 014, (2.C.3)
ES can be derived as
—~ . . @;1
ES, ., = —fitr + O—H-T%a (2.C4)

where ¢ denotes the density function of the standard normal distribution.

Student’s t distribution

Here, we consider a symmetric Student’s ¢, capturing the fatter tails and the more
peak in the distribution of the standardised returns as compared with the normal

case. Let X denote a Student’s ¢ variable with the pdf defined as below:

I'((d+1)/2)

W(l +22/d)~ D2 for d > 2, (2.C.5)

fiay(w;d) =
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where ['(+) is the gamma function and d is the degree of freedom larger than
2. The one-step ahead return is ., = fipsr + Grirty (d), where t;'(d) refers
to the empirical a-quantile of the standardised returns following a Student’s ¢

distribution with estimated parameter d. VaR can therefore be computed as
VaR,, = —fiyr — Grirty (d). (2.C.6)

ES is given by

—~ X 1
EStJrT = —Ht4r + Otpr —— (207)
where fi;1. and 67, are mean and variance of the previous 7 observations.

GARCH models

The Gaussian Normal and Student’s t distributions are fully parametric ap-
proaches and belong to the location-scale family with the general expression for
the returns 71y, = fi41r + 0417241+, Where the mean ;. and standard deviation
041, are the location and scale parameters, respectively. 2z;,, is the empirical
quantile of the assumed distribution of the standardised returns such as the stan-
dard normal distribution in the normal case. The GARCH models play a crucial
role in the location-scale family with time-varying conditional variances and a
modeled distribution for the standardised residuals, thus being considered dy-
namic approaches, as opposed to the static models (the Guassian Normal and

Student’s ¢ distributions). Considering GARCH(1,1) models with the normal or
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Student’s ¢ disturbances (GARCH(1,1)-N or GARCH(1,1)-¢), the time-varying

conditional variance is written as

a—752—|-7' =w + OéXtQ-l—T—l + 56152—1-7—1 (208)

Within the estimation window ¢, t+1, ..., t+7, the model parameters (u,w, a, f; d)
are estimated via maximum likelihood estimation with the constraints: w, a, 8 >

0, a+p < 1,and d > 2. For GARCH(1,1)-N, the formulae for computing VaR and

ES are the same as equation (2.C.3|) and (2.C.4). We can refer to equation (2.C.6)

and (2.C.7) to make VaR and ES forecasts using the GARCH(1,1)-¢ model.

Exponentially Weighted Moving Average

The exponentially weighted moving average method (EWMA) is a special case of
the GARCH(1,1) model with normal disturbances, as the conditional variance is

expressed as

67, =1 —=NX7, 1 +A67, 1, A=094. (2.C.9)

VaR and ES are computed as in equations (2.C.3) and (2.C.4)).

GARCH with Extreme Value Theory

The advantage of extreme value theory is to model the tail distribution, thereby it
focuses on the extreme values in the tail. In this chapter, we use the GARCH(1,1)

model with standardised t disturbances, combined with the EVT methodol-
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ogy (GARCH(1,1)-GPD). First, we obtain the standardised empirical losses via

GARCH(1,1), assuming they are distributed as a standardised ¢ distribution.

Xt+‘r = &t+‘rSt_1(d)7 6t2+r =w+ aX1t2+T—1 + 563—%7—1’ (2'0-10)

where St7!(d) denotes the inverse of the cumulative distribution function of a

standardised ¢ distribution with its pdf expressed as

iy (@ d) = C(d)(1+3%/(d—2)) D2 for d > 2, (2.C.11)

where

C(d) = . (2.C.12)

Z 1s a standardised random variable distributed as a standardised ¢ distribution
with mean 0, variance 1 and degree of freedom larger than 2. Then we fit Gener-

alized Pareto Distribution (GPD) to excesses y over the given threshold u, where

1—(1+&y/B)~Ye if€>0
GPD(y;&,58) = (2.C.13)

1 —exp(—y/p), if £ =0

with 8 > 0 and y > u. The tail index parameter ¢ controls the shape of the

tail. When £ is positive, the tail distribution is fat-tailed. Consequently, in this
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approach VaR could be computed as:
VaR,., = 614, VaR.(a), (2.C.14)

where

VaR.(a) = (u + g ((k%) h 1)) (2.C.15)

with £ the number of peaks over the threshold and n the total number of stan-

dardised empirical observations. ES is given by

E‘\Siﬁ-T = &t+TESZ(a)7 (2016)
where
ES.(a) = VaR.(a) < L Bty > | (2.C.17)
1-¢ (1-¢)VaR.(a)

Cornish-Fisher expansion

The Cornish-Fisher expansion (Christoffersen, 2012) allows for skewness and kur-
tosis to make VaR and ES forecasts by using the sample moments without any

assumption on the returns.

VaR,,, = —614,CF; (2.C.18)
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where 67, is the variance of the previous 7 observations, and C'F;! is expressed

below:

OF; = a7+ (@) 1] + (@7 - 307] - o [2(247)° - 52,]

(2.C.19)
ES is formulated as
-E‘\S?;T = _a-t+TESCF(o<) <2C20)
where
—¢p(CF1 ’ g
EScr(a) = —¢(CF ) 1+ g((JFOjl)3 + G [(CE;) —2(CF;Y)? — 1]
o 6 24
(2.C.21)

él and 62 represent the skewness and excess kurtosis of the standardised returns,

calculated based on the past 7 observations.

2.D Empirical results
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Figure 2.D.1: Historical maximum of optimal adjustments for ES estimates

(a) Based on the UCgg test
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(b) Based on the CCpgg test
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(c) Based on the Z; test
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This figure presents the historical maximum of required optimal adjustments made to the
daily ES estimates (o = 2.5%) of various models for the DJIA index from 01/01/1900
to 28/05/2017, obtained by passing the UCgs, CCgs and Zs tests, respectively.
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Table 2.D.1: Dates associated with the highest values of the absolute mini-

mum corrections made to the daily ES of various models

Model

UCEg test

CCggs test

7y test

Date

Ch

Date

Cs

Date

Cs

Historical

EWMA

Gaussian Normal

Student’s ¢

GARCH(L,1)-N

GARCH(1,1)-¢

Cornish-Fisher

GARCH(1,1)-GPD

=W N IEGVEN R N =W N =W N =W N

EENCR

16/06/1930
11/09/2009
20/11,/2008
12/12/1929

15/08/1932
08,/08,/1932
09/11/1931
22/06,/1931

17/08/1932
13/09/1935
12/09/1935
16/09/1935

29/05,/2009
15/09/1932
11/10/1932
08,/09/1932

14/12/1962
19/12/1962
27/03/1931
26,/03/1931

24/08/1932
25,/08,/1932
26,/08,/1932
02/02/1932

06/11/1929
29/10,/1929
10/02/1930
28,/10,/1929

24/09,/1936
26,/09/1986
23,/09/1936
21/11/1986

0.0250
0.0240
0.0230
0.0220

0.1355
0.1196
0.1010
0.0744

0.0873
0.0861
0.0859
0.0850

0.2184
0.1475
0.1324
0.1206

0.1011
0.0990
0.0484
0.0471

0.0869
0.0854
0.0812
0.0427

0.0140
0.0130
0.0120
0.0110

0.0295
0.0294
0.0293
0.0292

29/10/1929
14/12/1914
30/10/1930
13/12/1915

15/10/1935
18/10,/1935
17/10/1935
16/10,/1935

15/10/1935
18/10,/1935
17/10/1935
16/10,/1935

25/10,/1935
04/10/1935
28,/10/1935
29/10/1935

02/06/1915
10/06/1915
01/03/1915
02/03/1915

08/06/1915
25/05/1915
03/03/1915
09/06/1915

28,/10,/1930
29/10,/1929
14/12/1914
19/10/1987

14/12/1914
07/05/1915
15/12/1914
14/05/1940

0.0980
0.0570
0.0300
0.0280

0.0930
0.0898
0.0897
0.0893

0.0964
0.0927
0.0925
0.0921

0.1212
0.1118
0.1041
0.1005

0.0990
0.0775
0.0744
0.0721

0.1041
0.1022
0.1002
0.0999

0.0760
0.0750
0.0540
0.0280

0.0285
0.0284
0.0283
0.0132

20,/04,/2009
30,/03,/2009
05,/03,/2009
19/05/2009

20,/04,/2009
05,/03,/2009
30,/03,/2009
05,/05,/2009

20,/04,/2009
05,/03,/2009
30,/03,/2009
05,/05,/2009

05,/03,/2009
20,/04,/2009
30,/03,/2009
02/03,/2009

29/03/1938
29/10,/1929
14/04/1988
08,/08,/1930

08,/08/1930
28,/10/1928
12/12/1929
21,/07/1930

01,/12/2008
08/12/2008
29/12/2008
20,/11,/2008

14/04/1988
25/03,/1988
08,/01,/1988
10/03/1988

0.1186
0.1176
0.1172
0.1167

0.1241
0.1238
0.1229
0.1225

0.1433
0.1431
0.1421
0.1418

0.1315
0.1308
0.1300
0.1299

0.0408
0.0403
0.0397
0.0396

0.0118
0.0095
0.0086
0.0084

0.0975
0.0951
0.0933
0.0915

0.0360
0.0358
0.0344
0.0343

This table presents the dates associated with the highest values of the absolute minimum
corrections made to the daily 2.5% ES of various models based on different ES backtests.
The calculations are based on the DJIA index daily returns from the 1st January 1900 to
the 23rd May 2017, downloaded from DataStream. We make the 2.5% one-step ahead
ES forecasts based on wvarious models with a four-year moving window and backtest
ES estimates in the evaluation period of 250 days. C1, Co and C3 denote the optimal
corrections required to pass the unconditional coverage test (UCgg test), the conditional
coverage test (CCgg test) and the magnitude test (Zs test), respectively.
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Table 2.D.2: Dates associated with the highest values of the absolute mini-
mum corrections made to the GARCH(1,1)-GPD ES for different assets

UCggs test CCgg test Zo test
Asset Dates 4 Dates Cy Dates Cs

30/10/2001 0.0283 27/08/2002 0.0033 21/01/2008 0.0093
26/10/2001 0.0282 05/09/2002 0.0028 12/02/2008 0.0063
3 22/10/2001 0.0281 19/09/2002 0.0027 10/10/2008 0.0057

equity

[N

bond 05/07/2013 0.0033 14/05/1999 0.0004 05/08/1994 0.0034
01/08/2013 0.0027 21/04/1995 0.0001 16/09/1994 0.0033

3 09/08/2013 0.0026 15/08/1991 0.0000 06/05/1994 0.0032

[N

—_

commodity 30/04/1993  0.0065 20/12/1994 0.0007 17/02/2009 0.0211
28/04/1993  0.0064 19/12/1994 0.0005 20/02/2009 0.0198

3 26/04/1993 0.0063 07/03/2008 0.0004 19/11/2008 0.0190

[N}

This table presents the dates regarding the highest values of the absolute minimum cor-
rections made to the GARCH(1,1)-GPD ES (a = 2.5%) for different assets by passing
different ES backtests. The empirical data is downloaded from DataStream. For the eq-
uity, we use a composite index with 95% “MSCI Europe Index” and 5% “MSCI World
Index”; for the bond, we use the “Bank of America Merrill Lynch US Treasury &
Agency Index”; for the commodity, we use the “CRB Spot Index”, from 31/10/1986
to 07/07/2017. We compute the GARCH(1,1)-GPD ES of different assets at a 2.5%
coverage level by using a four-year moving window and backtest ES estimates in the
evaluation period of 250 days. The variables Cv, Co and C5 denote the optimal cor-
rections required to pass the unconditional coverage test (UCggs test), the conditional
coverage test (CCgg test) and the magnitude test (Zs test), respectively.
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Figure 2.D.2: Left tail of the cumulative distribution of the negative of
required optimal adjustments made to the daily ES estimates

(a) Based on the UCgg test
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This figure shows the left tail of the cumulative distribution (using Gaussian Kernel
smoothing) of the negative of required optimal adjustments made to the daily ES es-
timates (o = 2.5%) for the DJIA index from 01/01/1900 to 23/05/2017, in order to
pass the UCgg (panel a), CCgg (panel b), and Zs (panel c) tests, respectively.
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Table 2.D.3: Means and standard deviations of optimal corrections for the
2.5% ES and 1% VaR

Model Mean €y Mean Cy Mean C3 Std. dev Std. dev  Std. dev
of Cl of CQ of 03

Panel A: Means (¥1072) and standard deviations of the absolute optimal
corrections made to the daily ES (o = 2.5%).

Historical 0.13 0.20 0.53 0.0039 0.0108 0.0157
EWMA (A=0.94) 0.69 0.37 0.74 0.0133 0.0108 0.0179
Gaussian Normal 0.72 0.42 0.84 0.0135 0.0111 0.0200
Student’s ¢ 1.13 0.38 0.73 0.0125 0.0098 0.0186
GARCH(1,1)-N 0.20 0.08 0.33 0.0039 0.0038 0.0067
GARCH(1,1)-t 0.29 0.15 0.01 0.0051 0.0063 0.0006
Cornish-Fisher 0.05 0.14 0.29 0.0019 0.0076 0.0104
GARCH(1,1)-GPD 0.11 0.08 0.09 0.0039 0.0035 0.0038

Panel B: Means and standard deviations of the relative optimal

corrections made to the daily ES (o = 2.5%).

Historical 4.5% 6.1% 18.2% 0.1215 0.3050 0.5010
EWMA (A\=0.94) 26.0% 11.6% 30.7% 0.4263 0.3034 0.6769
Gaussian Normal — 27.4% 13.4% 35.8% 0.4339 0.3095 0.7991

Student’s ¢ 39.6% 9.8% 25.5% 0.3823 0.2167 0.5933
GARCH(1,1)-N 8.4% 3.4% 13.4% 0.1530 0.1471 0.2415
GARCH(1,1)-¢ 8.7% 4.1% 0.2% 0.1430 0.1556 0.0138
Cornish-Fisher 1.8% 2.2% 9.8% 0.0586 0.1085 0.3373
GARCH(1,1)-GPD 5.8% 3.0% 2.5% 0.2087 0.1169 0.0952

Panel C: Means and standard deviations of the relative optimal corrections made
to the daily VaR (oo = 1%), by passing VaR backtests.

Historical 2.9% 7.7% 22.6% 0.0978 0.3168 0.3425
EWMA 6.3% 10.8% 42.1% 0.1565 0.3065 0.5226
Gaussian Normal — 7.3% 14.3% 41.7% 0.1830 0.4392 0.5100
Student’s ¢ 4.2% 10.0% 28.1% 0.1275 0.3822 0.3974
GARCH(1,1)-N 2.3% 6.5% 63.7% 0.0601 0.2271 0.7828
GARCH(1,1)-¢ 0.0% 1.5% 32.0% 0.0019 0.1134 0.4904
Cornish-Fisher 0.8% 2.4% 12.6% 0.0366 0.0989 0.2040
GARCH(1,1)-GPD 0.2% 2.5% 43.2% 0.0155 0.1461 0.6180

Panel D: Means and standard deviations of the relative optimal corrections made
to the daily ES (o = 2.5%), after VaR model risk is first removed.

Historical 2.4% 5.6% 8.3% 0.0648 0.2495 0.2437
EWMA 4.5% 4.3% 15.3% 0.1029 0.2460 0.3306
Gaussian Normal 8.0% 4.6% 15.7% 0.1835 0.1801 0.3545
Student’s ¢ 8.1% 3.3% 10.7% 0.1879 0.1183 0.2834
GARCH(1,1)-N 6.0% 2.9% 9.4% 0.1142 0.1479 0.1834
GARCH(1,1)-¢ 0.3% 2.3% 0.2% 0.0323 0.1349 0.0133
Cornish-Fisher 1.1% 3.1% 4.2% 0.0317 0.0965 0.1462
GARCH(l,l)—GPD 4.2% 3.0% 2.0% 0.1736 0.1167 0.0750

This table presents means and standard deviations of the absolute and relative correc-
tions made to the daily 2.5% ES, the relative corrections made to the daily 1% VaR,
and the relative corrections required for the 2.5% ES after VaR model risk is excluded
first, based on the UCgg, CCggs and Zy backtests. The calculations are based on the
DJIA index from 01/01/1900 to 23/05/2017, downloaded from DataStream.
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2.E Simulated Bias

Similar to Table we conduct a simulation study to show the impacts of
estimation and specification biases on the ES forecasts in Table 2.E.1} Assuming
a different data generating process, Markov Switching with 2 regimes combined
with GARCH(1,1) with normal innovations (denoted by MS(2)-GARCH(1,1)-N)
introduced by Klaassen| (2002)), we simulate 1000 paths of 1000 daily returns, thus
computing the theoretical ES forecasts. The specification of the data generating

process for the daily returns is given as below:

Tt = \/ hstZta Zt ~ IIDN(O, 1), St — {1, 2}, (2E1)

s; denotes the possible states of the market at time ¢, 1 and 2, in which the

conditional variance dynamics follow a GARCH(1,1) process and are specified as:

2
hst = wst + Oést/rt2—1 + /8815 Zpijhi,t—17 (2E2)

=1

where p;; represents the probability of state j at time ¢ conditional that the market
is in state ¢ at time ¢-1, and h;;—; is the conditional variance in state i at time
t—1. The constraints on the parameters are wy,, as, and 35, > 0 in order to ensure
the positivity of the variance dynamics. The results are based on the DJIA index
from 03/01/2000 to 30/12/2011, the estimated parameters are w; = 1.1198¢~%,

a; = 0.0025, and 3; = 0.9152; wy = 8.2761e7 %, ay = 0.0677, B, = 0.9152 with
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the probabilities pi; = 0.7726 and pay = 0.9938. We run simulations using these
parameters and make one-step ahead ES forecasts as equation for the
simulated data series using the MS(2)-GARCH(1,1)-N model, historical method,
Gaussian Normal distribution as well as the EWMA model, thereby giving the

corresponding estimation and specification biases in Table [2.E.1]
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Notes

! Alternatives are Median Shortfall (So and Wong} 2012), and expectiles (Bellini and Bignozzi,

0T5).

2Estimation risk refers to the uncertainty of parameter estimates. Misspecification risk is

the risk associated with inappropriate assumptions of the risk model, whilst identification risk

refers to the risk that future sources of risk are not currently known and included in the model.

3When it comes to backtesting risk estimates, |[Escanciano and Olmo| (2010al), in their Theo-

rem 1 of the first paper, show how estimation risk and specification risk (which they call model
risk) affect the test statistic (S,) of the unconditional coverage backtest for VaR:

" ) ) ) M .o
Sp = # (7§“ [I1.0(00) = Fiw,_, (ma(Wi—1,60))] + E [gh(Wi—1,600) fiv,_, (ma(Wi—1,60))] NG XR: IH(t -1+ VP -
t= t=R+ t=

Estimation risk Model risk

[Fw,_, (ma(Wi—1,60)) — o] + op(1).
1

4Rather than calibrating model risk based on statistical significance testing, assessing model

risk concerning the space of possible models is of prominent importance in the Bayesian model

averaging literature. Brock et al.| (2003, 2007) study the role of model risk in policy evaluation

and propose the model averaging method. However, this technique is difficult to use in the
applications we have in mind, since it requires the specification of prior probabilities over the
model space. Additionally, risk assessment of a particular model typically calls for quantification

of risk by means of a single number representing the required capital reserve.

®Similar characteristics of a desirable VaR estimate are considered by |Boucher et al.| (2014).

6The values of VaR and ES are considered positive in this chapter.

"We also consider a different model, MS(2)-GARCH(1,1)-N, as the data generating process,

and give simulated biases in Table Appendix
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8The parameters of GARCH(1,1)-N estimated from the DJIA index (1st Jan 1900 to 23rd
May 2017) are : u = 4.4521e%; w = 1.3269¢7%: o = 0.0891; and 8 = 0.9017.
9 we use the p-value = 0.05 in this chapter. For different p—values, the results are essentially

similar to those presented in this chapter.

10The critical value related to the 5% significance level for the Z, test is -0.7, which is stable

for different distribution types (Acerbi and Szekely] 2014)).

1o find the optimal correction of VaR accommodating for model risk, two VaR backtests are

considered. The VaR backtests are Kupiec’ s unconditional coverage test (Kupiec, [1995)), and

Christoffersen’s conditional coverage test (Christoffersen [1998). We do not include Berkowitz’s

magnitude test (Berkowitz, 2001)), because in principle it is very similar to the magnitude test

for ES (it checks the size of exceptions).

12The UCgg and CCgg tests for all the distribution-based ES are examined in the setting

proposed by |Du and Escanciano| (2016]), whilst the Cornish-Fisher expansion and the historical

method are entertained in the same setting but in a more general way. ES for the asymmet-

ric and fat-tailed distributions (Broda and Paolellal [2011)) can also be examined using these

backtests.
13The results computed using a five-year moving window and a three-year moving window

are very similar to those required here (available from the authors on request).

MBoucher et al. (2014) only present the results for the 5% VaR.

15The three VaR backtests are Kupiec’s unconditional coverage test (Kupiec, 1995)), Christof-

fersen’s conditional coverage test (Christoffersen, 1998) and Berkowitz’s magnitude test (Berkowitz

2001).

16See the data source in the note to Table [2.4.2]

170ther varieties of Historical Simulation, such as Filtered Historical Simulation, are found

in (Christoffersenl, 2012)).




Chapter 3

Scoring Function-Based Model

Risk of Risk Models

3.1 Introduction

Managing financial risk is paramount to corporate companies. The measurement
of different types of risk is required to satisfy investors and regulators. The
most used statistical risk measures, Value-at-Risk (VaR) and Expected Shortfall
(ES)!, are of particular interest in assessing market risk which refers to the risk
arising from a change in the value of a financial position due to the unexpected
price movements of primary risk factors such as stock prices, commodity prices
or interest rates. As required by the Basel Committee on Banking Supervision
(2019), market risk should be measured by ES which is defined as the average

loss beyond the VaR threshold.

78
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Nevertheless, the statistical computation of these risk measures not only de-
pends on model choice, meaning that the VaR and ES measures are subject to
model risk, but the true risk is not observable ex-post, so it is challenging to
perform backtesting. Hence, the decisions taken by managers may be impaired
by model risk and accounting for this additional risk is requested by the Federal
Reserve and the European Banking Authority. Financial companies tend to be
conservative in managing model risk by adding an extra capital buffer, irrespec-
tive of the value of model risk. To this end, quantifying the model risk of the risk
estimation methods and incorporating it into the regulatory capital have become
nontrivial and significant in the advance of model risk management.

In this chapter we propose an improved methodology to measure and com-
pare the two main model risk components, parameter estimation risk and model
specification risk, of market risk models by analyzing the pair (VaR, ES) based
on the F'Z scoring functions introduced by |Fissler and Ziegel (2016]). We first
show that in the presence of model risk, the ordering of competing (VaR, ES)
models is sensitive to the choice of F'Z scoring function. Secondly, we put for-
ward a general F'Z scoring function-based model risk computation methodology
to estimate the joint (VaR, ES) model risk and the ES model risk of a certain
model, at a given significance level. Thirdly, in a simulation study, we verify the
above proposed measurement of the joint (VaR, ES) model risk and, separately,
of the ES model risk alone, by using several specific F'Z scoring functions which

are positively homogeneous of degree 0, 0.5 and -1. Lastly, we highlight that our
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proposed scoring function-based measures of joint model risk and ES model risk
satisfy all the desirable coherence properties except for the subadditivity property
which is not always satisfied.

Jorion| (1996) signals early on the existence of risk in estimating VaR. With the
increasingly intensive use of complex risk models, the concern among academics?
about model risk has grown after the global financial crisis in 2008, and it has
prompted a line of research in the accuracy of risk models. The performance of
VaR models has been investigated and then further improved in several strands of
recent studies: 1) the quantification of model risk of a given market risk model de-
veloped around a reference model (see e.g., [Kerkhof et al., 2010; Lonnbark, 2013;
Glasserman and Xu|, 2014} Barrieu and Scandolo, 2015 Danielsson et al., 2016); 2)
the computation of model risk based on numerical algorithms like the bootstrap-
ping technique, leading to more computational burden (see e.g., Christoffersen
and Gongalves, [2005); 3) the calculation of model uncertainty associated with
the backtesting procedures for which Escanciano and Olmo| (2010a,b)) proposed
robust test statistics allowing for parameter estimation risk (also see the esti-
mation bias correction of Pitera and Schmidt, 2018) and model misspecification
risk. Furthermore, Boucher et al. (2014)) suggest a correction to VaR estimates
required to pass several backtests tailored to some criteria; considering the ac-
curacy of ES models, |Lazar and Zhang (2019)) develop a similar methodology to
adjust ES estimates that would pass certain ES backtests. Although these stud-

ies take the model uncertainty of VaR or ES models into account and compute a
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backtesting-based correction for risk forecasts, their approaches do not quantify
model risk numerically as such.

In addition, the subject of modeling and backtesting ES has generated a lot
of interest recently, Acerbi and Szekely| (2014)), Colletaz et al.| (2013), |Du and
Escanciano (2016)), [Emmer et al.| (2015), Fissler et al.| (2016)), |[Kratz et al.| (2018)),
and Kellner and Rosch| (2016) being major contributions to this topic. Since the
estimation of ES is often a by-product of the VaR estimation procedure, referred
to the more recent literature (e.g., [Patton et al. 2019), the model risk of the
ES is closely linked to that of VaR at a given significance level. Hence, we are
motivated to measure directly the magnitude of model risk of joint (VaR, ES)
forecasts at a certain significance level.

Market risk models may carry three sources of model risk (Kerkhof et al.|
2010 and |Boucher et al. [2014]): 1) misspecification error, arising when the model
is misspecified; 2) estimation risk, occurring due to the inaccurate parameter
estimation for the model; 3) non-nested information sets of two different models
leading to identification problems, when not all the information is detected and
considered for forecasting. The current scoring function literature documents that
scoring functions work well to estimate model parameters for financial risk models
(Patton et al., 2019) and to rank the predictive performance of competing models
(e.g., [Ehm et al.,|2016/ and Nolde and Ziegel, 2017a). [Patton (2019) links forecast
evaluation to specific sources of model risk, arguing that since VaR models may be

impacted by misspecification error, estimation error and nonnested information
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sets (that is, identification risk), the ranking of VaR models may be sensitive
to the choice of the generalized piecewise linear (GPL) scoring function which
is strictly consistent for VaR. Motivated by Patton| (2019), we bridge the gap
between the scoring function literature and model risk literature, proposing a
methodology to estimate the model risk of the pair (VaR, ES) forecasts, based
on the F'Z scoring functions discussed in [Fissler and Ziegel (2016]).

The coherence properties that a risk measure should satisfy as introduced by
Artzner et al| (1999) are important from a regulatory perspective. Here we ana-
lyze the coherence properties of our scoring function-based model risk estimation
methodology via simulations. In particular, the subadditivity property, which has
been a major concern of the VaR measure and the main theoretical advantage of
the ES measure (Garcia et al., 2007 and [Danielsson et all 2013)), is revisited for
the model risk measure proposed in this chapter.

The structure of Chapter [3| continues as follows. Section |3.2]is focused on the
sensitivity of ranking (VaR, ES) models to the choice of the F'Z scoring function in
relation to the major sources of model risk. Section [3.3] proposes an F'Z scoring
function-based model risk measure of (VaR, ES) risk measures, illustrating its
effectiveness via simulations and Section |3.4] examines its properties in a realistic
simulation study. Section |3.5| applies our proposed model risk measure to a set

of real-world financial data and Section 3.6 concludes.
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3.2 Model risk in relation to scoring functions

3.2.1 Scoring functions

We start with some background information and introduce notations that we
follow from [Nolde and Ziegel (2017a). A risk measure p is defined on some
space of random variables, for example, a random variable R taking values in
an observation domain B C R. Fg denotes the cumulative distribution function
of the return R assumed to have a finite mean. A series of risk measure esti-
mates ©1(R), ..., Or(R) take values in an action domain A C R¥, where ©;(R) =
(p1(R), ..., pr(R)) is a k-dimensional vector of risk measures, fori = 1,...,7. The
emphasis in our study being on VaR and ES measures (that is, k = 2), let v,
denote the VaR measure and e, for the ES measure at a given significance level
a € (0,1), such as o = 2.5%, recommended by the |Basel Committee on Banking

Supervision (2019). VaR and ES at an « critical level are computed as:
va(F) = int{r € R : Fy(r) > a}, ea(F) = - / vu(F)du. (3.2.1)
0

Hence, v, and e, have negative values, following the sign convention of |Ziegel
et al. (2020). Without loss of generality, we shall omit henceforth the subscript
« from v, and e,.

Definition 1. A scoring function® is a map S : A x B — R. For a given

family of probability measures P, the scoring function S is considered consistent
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for the vector of risk measure(s), ©(R), with respect to the class P, if for all

Y =(Y,...,Y), any R and all P € P:
Ep[S(O(R),R)] <Ep[S(Y,R)]

When there is no equality in the above condition for all Y # O(R), S is called
strictly consistent for the vector of risk measures ©(R) which are called elicitable.

Gneiting| (2011)) proves that VaR is elicitable, since it can be uniquely obtained
by minimizing the expected score given by the GPL scoring function which is
strictly consistent for VaR, but at the same time ES is not elicitable (see Ziegel,
2016). However, Fissler and Ziegell (2016|) argue that VaR and ES are jointly
elicitable under the assumption that the conditional distributions of returns are
continuous, and formally provide a class of scoring functions strictly consistent
for this pair of risk functionals © = [v,e]. For a critical level «, considering
two increasing continuously differentiable functions Gy and Gy = @) such that
E[G1(2)] exists and lim,_,_, G2(z) = 0, and a realization of return denoted by
r, the class of strictly consistent scoring functions? for the pair of risk measures

(v, e) is given below (hereafter, F'Z scoring functions):

Srz(rv,e;0,G1,Ge) = (Ly<oy — @) (Gi(v) — Gi(r)) (3.2.2)

#63(6) (TLpa(0=1) = (- 0)) = (Ga(e) ~ Galr)
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Definition 2. A scoring function S within the F'Z family is called positively

homogeneous of some order b € R if for all v = (v, ...,v,), € = (e, ..., €,) and all

S(Ar, M, Ae; a, Gy, Go) = A°S(r, v, e;a, G1, Gy), for all A > 0.

Upon rescaling the data, positive homogeneity will ensure that the same param-
eter estimates are derived, or the same orderings of models are obtained, using
the same form of scoring function (see details in [Efron, 1991 and [Patton) 2011)).
This is a desirable feature for forecast ranking (Patton, 2011)). |[Nolde and Ziegel
(2017a) streamline the full class of FZ family in such that the resulting

scoring differences are positively homogeneous of degree b. This is equivalent to:

ifb<0: G1(2> = — (o, g2(2> = Cl(—2>b -+ ¢o,
ifb=0: Gl(Z) = doﬂ{zgo} + d{)]l{z>0}, gz(Z) = —C log(—z) + Co,

and if b € (0,1) : G1(2) = (&)1 z20y — dilpa<oy)|2]° + o, Ga(2) = —c1(—2)" + co;

(3.2.3)

for constants® cg, dy, dy € R with dy < dj), dy,d; > 0 and ¢; > 0. For b > 1, there
is no positively homogeneous scoring function. The computational assumption
that ES is strictly negative is being used. Throughout this chapter, we use the

notation “FZ0” coined by Patton et al| (2019)) for the 0-homogeneous case: if
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and only if G1(z) = 0 and Ga(z) = —1/z in (3.A.2)), it can be written as:

1 v
Srzo(r,v,e;a) = —El{r@}(v —7)+ - +log(—e) — 1.

3.2.2 Model risk in relation to the F'Z class

In his seminal paper, Patton (2019) investigates the sensitivity of ranking risk
models to different scoring functions, making three assumptions with respect to
identification risk, estimation risk as well as misspecification risk, accordingly:
1) the information sets of the forecasters are nested, so Ff C FA or F* C FP
for all ¢, and they do not lead to identical optimal forecasts for all ¢; 2) if the
forecasts are based on models, then the models are free from estimation error; and
3) if the forecasts are based on models, then the models are correctly specified
for the statistical functional(s) of interest. One of his major findings is that, if
any of the assumptions above is not satisfied by the VaR models (in other words,
the VaR risk measure models come with identification risk, parameter estimation
risk or misspecification risk), then the ordering of VaR models may be sensitive
to the choice of scoring function within the GPL class. Inspired by this, we
draw a connection between the F'Z scoring functions for the pair (VaR, ES) at
an « critical level and different sources of model risk in the following proposition,
similar to Proposition 4 in Patton (2019):

Proposition 1 (a) Under the aforementioned three assumptions, the ranking of
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two risk models (A, B) by comparing the expected score of FZ0 scoring function,
Srzo.4 and Spzo B, is sufficient for their ranking by any (strictly consistent) F'Z

scoring function S defined in (3.A.2)). That is, for all S € Spz and the pair (VaR,

ES) measures estimated at an « significance level,

E [SFZO,B] § E [SFZO,A] —E [S(’I“t, @it, éf,t)] § E [S(’f‘t,@it, éé,t” . (324)

(b) If any of Assumptions 1,2 and 3 fails to hold, then the ranking of these two
risk models may be sensitive to the choice of the F'Z scoring function.
Proposition 1(a) shows that conditioning on the absence of model risk will
warrant that the ranking of risk models by the F'Z0 scoring function is consistent
with the ordering given by any other F'Z scoring function; Proposition 1(b) states
that if model risk is present, the ranking of risk estimation procedures may be
affected by the choice of (strictly consistent) scoring function. Proofs adapted

from [Patton| (2019) are given in the supplemental appendix.

3.2.3 Sensitivity of model ranking to the F'Z class in the
presence of model risk

Regarding Proposition 1(b), we provide three examples showing that the ranking
of risk models is sensitive to the choice of F'Z scoring function when model risk is
present. Specifically, we compute the average loss (score) difference between two

competing models. This technique is widely accepted, see (Gneiting| (2011, Nolde
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and Ziegel (2017a)) and Patton (2019)). For instance, if model A has a smaller
expected loss than model B, implying a negative average loss difference between
model A and model B, then model A dominates model B.|Nolde and Ziegel| (2017z)
find that model comparison based on the expected score of a given F'Z scoring
function should be made on a sample large enough in order to reduce the effect
of the data on the stability of ranking competing models. As in Nolde and Ziegel
(2017b), we use a window length of 2,000 to compute the expected score (of FZ
class) in the following simulation and empirical study so that the quality of risk
measures could be evaluated without outliers’ effect. Our calculations confirm
that 2,000 data points are sufficient to achieve stability (for the sample average
score to converge to the true mean score).

(i) First, consider the case characterized by the presence of identification risk
when non-nested information sets are applied to two competing risk models, based
on the positively homogeneous F'Z class specified in . We first simulate
10,000 daily stock returns according to the AR(1)-GARCH(1,1) model specified
below:

Ty = Ut + OtE¢, Et ’I/Ld N(O, ]_), (325)

where p; = 0.03 4 0.057,_1, o = 0.05+ 0.8807 | + 0.0507 &7 ;.

Next, we compute daily VaR and ES estimates at an « significance level, free

of estimation and misspecification risk, based on the non-nested information sets
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(thus leading to identification risk):

o=t ot @, et [ 0w (320)
0

i =itoda), =+ [ 07 (a)da:
0

where the unconditional mean and volatility are i = 0.0316 and ¢ = 0.8452,
respectively, given the known parameters in (3.2.5). The first pair of risk func-
tional only utilizes the information on the conditional mean (u;) associated with
the AR(1) process, referred to as the mean forecast A; while the second pair only
employs the variance (0?) associated with the GARCH(1,1) process, referred to
as the volatility forecast B.

The right figure of panel (a) in Figure shows average F'Z loss differences
between the mean forecast and volatility forecast along with the degree of homo-
geneity, [-1,1), when one-step ahead VaR and ES measures are computed using a
rolling window of length 1,000 at multiple significance levels based on the simu-
lated data. The positive loss differences suggest that the volatility forecast fits the
simulated data better than the mean forecast, indicating that at more extreme
« levels, the volatility forecast performs better in capturing the variations of the
data than the mean forecast. The average loss differences can be negative for less
extreme « levels (for example, & = 50%), showing that the mean forecast is favor-
able in making risk forecasts. This is in line with Figure 5 in [Patton! (2019). The

switching sign of the average loss differences for different F'Z scoring functions is
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Figure 3.2.1: Sensitivity of model ranking to the choice of scoring function
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This figure presents average loss differences against positive homogeneity from -1 to
1. Panel (a): loss differences between the mean forecast and the volatility forecast in
(3.2.6); panel (b): loss differences between the estimations based on estimation windows
of 1,000 and 500; panel (c): loss differences between NEVT and NFHS. In all panels:
the left figure presents average loss differences with 95% confidence intervals in grey
for daily risk measures at o = 2.5% when 1,000 paths of 2,000 returns are simulated,
and the right figure presents average loss differences for daily risk measures at multiple
levels in a simulated path of 10,000 (panel a) or 2,000 (panel b and c) returns.
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clearly identified where VaR and ES are estimated at o = 40% and 50%. This
is consistent with Proposition 1(b), arguing that the ordering of competing risk
models is affected by the choice of the F'Z scoring function. Nevertheless, at the
regulatory coverage level of a = 2.5% for VaR and ES, the ranking of these two
models based on various F'Z scoring functions, though subject to identification
risk, is still consistent as shown in the right figure of panel (a), which may support
the use of F'Z0 scoring function for forecast evaluation. In order to exclude the
effect of noise of the simulated data on switching signs, the left figure of panel (a)
presents the average loss differences within the 95% confidence intervals in grey,
based on simulating 1,000 paths of 2,000 daily returns.

(ii) Secondly, consider the sensitivity of ranking two risk models affected by
parameter estimation risk, in our case when the length of estimation windows
varies, to the choice of scoring function. We choose a simple GARCH(1,1) pro-
cess with Student’s ¢ innovations to simulate financial returns, using the model
parameters in |[Kratz et al.| (2018) who fitted a t-GARCH(1,1) model on the daily

log-returns of S&P500 index between 2000-2012. The model is written as:

Ty = O'tZt, Zt ~ iid St(506), (327)

where ¢? = 2.18 x 107% +0.10972 | + 0.89002 ,,

{Z;}1en is an 1.i.d sequence of Student’s ¢ distributed random variables with de-

grees of freedom equal to 5.06. Then we use the same GARCH(1,1) specification
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with Student’s ¢ disturbances to compute the daily VaR and ES estimates at mul-
tiple levels with different parameter estimation windows, L;=1,000 and L,=500,

where L = {Lq, Ly}:

ob = 6St7Nd), el =

o™

“fsuay (St;%d)) - (3.2.8)

The values of average loss differences between the estimations based on the
longer estimation window and the shorter one are mostly negative for all the
significance levels considered, and they converge to zero as the degree of homo-
geneity increases, occasionally turning positive, as can be seen from the right
figure of panel (b) in Figure [3.2.1] in which a path of 2,000 returns is generated
by the DGP in . On the left figure of panel (b) we simulate 1,000 paths
of 2,000 returns, compute the daily risk estimates at o = 2.5%, and generate
the average loss differences with the 95% confidence intervals in grey. Panel (b)
provides evidence that the choice of scoring function may have an effect on the
ranking of the (VaR, ES) models subject to estimation risk.

(iii) Thirdly, we show that the ranking of two misspecified risk models (with
parameter estimation risk present) may be affected by the choice of F'Z scoring
function. In this case, we implement the same DGP as in (3.2.7). In order
to compute the daily VaR and ES measures at a certain significance level, we
fit a GARCH(1,1) model with normal innovations to the simulated return data

and then obtain the standardized residuals which tend to be fat-tailed, using a



3.2. Model risk in relation to scoring functions 93

rolling window scheme with a window length of 1,000. Subsequently, we employ
different risk estimation models on the standardized residuals. First, we apply the
generalized Pareto distribution (GPD) parameter estimation procedure under the
extreme value theory, developed by McNeil and Frey| (2000)), to model the tail
distribution of these residuals, with the threshold chosen as the 12% quantile
as in Nolde and Ziegel (2017a). This is denoted by NEVT. Specifically, we fit
the distribution of exceedances (y) beyond the threshold (u) with GPD(y;¢&, )
shown as below, where £ and 3 are the shape and scale parameters with 5 > 0,

respectively:

1—(1+¢y/B)7Ye, ifE>0,
GPD(y;&,8) = for all y > u.

1 —exp(—y/B), if £ = 0;

Then for a given significance level, the pair of risk estimates (VaR, ES) obtained

with NEVT is analytically given by:

@tEVT = —0Vept (@), é; = —Geept(),

where vy (a) = (u + g <(%) h — 1>> ;
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= Vept() - ! (B N EU)
and  ecp () = Veur () <1 — é " (1— é)%ut(@) '

In the above formulae, k is the number of exceedances and 7 represents the total
number of standardized empirical observations. All model parameters are esti-
mated using a rolling window of length 1,000. Secondly, we use Filtered Historical
Simulation (FHS) to estimate the lower tail of the innovations without assuming
any conditional distribution for the data, for which we perform bootstrapping
10,000 times (Ruiz and Pascual, 2002), which is referred to as NFHS. Then, we
combine the estimated GARCH variances with the upper (1 — a)-percentile of

the standardized residuals (Zt) to compute daily VaR and ES measures:

o1 = —ovms(@), e = —depmns(a);

where vy, = percentile {{—Zi,t}fil, 100(1 — a)} :

A

N
1 A
and €fhs = m E <_Zi,t>]1(_Zi,t > Ufhs)-
=1

The right figure of panel (c) in Figure shows the advantage of EVT in mod-
eling the tail distribution especially at small a levels. We can differentiate two

misspecified risk models using below zero-homogeneity scoring functions due to
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the non-zero values of average loss differences, whilst this is not the case when us-
ing above zero-homogeneity scoring functions. The left figure of panel (c¢) presents
the 95% confidence intervals of average loss differences for risk measures at 2.5%
level.

Overall, the above three realistic simulation-based scenarios show that in the
presence of model risk, the ordering of competing (VaR, ES) risk models is sensi-
tive to the choice of F'Z scoring function with degrees of homogeneity between -1
and 1, indicating that model risk indeed matters in making model comparisons
based on the expected F'Z score. This provides a possible explanation for the
results of [Fissler et al| (2019) who describe the properties of scoring functions
using different definitions of order sensitivity. They conclude that the F'Z scoring
function is order-sensitive on line segments (see their Definition 3.3), meaning
that the scoring function is linearly increasing between the true functional value
(true risk) and any risk functional. In other words, denoting the vector of true
(VaR, ES) by z, for any given vector 7, the scoring function of an estimate z + sn
where s € [0, 00] is linearly increasing in s. Although the true value of (VaR, ES)
is never known in practice, the optimal risk estimates can be uniquely obtained
via minimizing the expected score of a given scoring function due to the joint
elicitability of (VaR, ES) (Fissler and Ziegel, 2016). In addition, the relationship
between the expected score and the size of model risk is not clear. In the remain-
ing part of Chapter , our purpose is to quantify the model risk of a (VaR, ES)

risk model via minimizing the expected score of a certain F'Z scoring function.
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3.3 Scoring function-based model risk measure

In this section, we assess the model risk of a set of widely known risk models
considered also in Nolde and Ziegel| (2017a)) (a review of these risk models is pro-
vided in Appendix: the nonparametric method is Historical Simulation (HS);
the semi-parametric methods include the GARCH(1,1) models with the normal,
standardized Student’s ¢, and skewed ¢ innovations combined with the Filtered
Historical Simulation technique (NFHS, TFHS, and SKTFHS); the parametric
methods include the GARCH(1,1) processes with the normal, standardized Stu-
dent’s ¢, and skewed ¢ distributed innovations (NFP, TFP, and SKTFP), as well
as these models combined with the Extreme Value Theory (EVT) methodology
(NEVT, TEVT, and SKTEVT). We also consider the newly proposed semipara-
metric models® based on the FZ0 minimization of Patton et al.|(2019)): the one-
factor GAS model (denoted by FZ1F), the GARCH model via FZ minimization
(denoted by GFZ) as well as the hybrid GAS/GARCH model (denoted by Hybrid
for brevity), and add the EWMA model (A = 0.94, also called RiskMetrics) to
the parametric approaches. We use these risk estimation methods to compute the
ex-ante one step ahead VaR and ES estimates at a given significance level using
rolling windows of length 1,000.

In the following, our scoring function-based model risk framework is con-
structed based on: 1) a time series of observed ex-post realizations of returns

Tty ..., Terr and 2) for a given significance level a, a time series of ex-ante daily
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(VaR, ES) measures (47, ¢]), ..., (ﬁngT,é{JrT) made by risk model j € {1,...,m} of

m > 1 competing risk models.

3.3.1 Scoring function-based joint model risk measure

Ideally, if the pair of true risk measures were known, it would be straightforward
to compute the distance from the estimated risk measures to the true ones, thus
measuring the size of model risk.

Definition 3. For the risk functional(s) Z and all F: F — D C R?, consider

25 = (@g,é{), and z; = (v, ), such that 2§ and z; € D. {2g}t§i§t+n is a time
series of risk estimates made by model j € {1, ..., m}, where we have m competing
models over the model risk evaluation period, with 0 < n < T, whilst {2; }i<i<t4n
is the time series of true values of risk measures Z given by the true model over

the same period. The joint model risk measure pft 0] of a risk model j over the

evaluation window [t,t 4 n] is defined as:

. 1 Un : :
pft,t—f—n] - nt+1 Z \/(@i —v;)2 4 (€] — e;)? (3.3.1)
i=t

However, the true values of risk measures z; = (v;, e;) are unknown in practice.
As such, we propose a pragmatic method to estimate the joint model risk of a
(VaR, ES) risk model: first, we calculate the optimum multipliers’ {x{l} and
{xél} by minimizing the expected score over the multiplier estimation window® i

from t + k to t + 7 + k with window length of 7+ 1, where £k = 0 : T — 7. For any
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risk model j, the time series of {3/} and {&/} are estimated at an « significance
level, then these time-varying multipliers are the solution to the minimization

exercise:

1 t+7+k ‘ ‘
: Z Spz (ri, X1 - 0], X5 - €/;)3.3.2)
i=t-+k

J J _ :
(I1,t+r+k’ x2,t+7’+k) = argmin 1
(X1,X2) T T

In the above, {r;} is the daily return series, X; and X, are multipliers of f}f and
ég , respectively, and we use the restrictions that X; ﬁf > Xo- é{ , with X7, X5 > 0.

Next, we approximate the joint (VaR, ES) model risk pft ] of risk model

J as the average distance between z] and z"™" across the model risk evaluation
: jmin. __ (oJ N o0 5T ; ;
window [t + 7, + 7 + n]. Here 2 = (@1, - 0/, 73, - &) is an improved pair

of risk estimates after the estimated multipliers (obtained via F'Z minimization)

are applied:

t+7+n
. 1 U EE— ——
p€t+77t+‘r+n} ) +1 Z \/(vf - x{l S07)? A+ (6] - x;l - €))% (3.3.3)
1=t+T

The solution in (3.3.2) shows that if the multiplier is larger (smaller) than 1,

the corresponding risk estimate is underestimated (overestimated). To this ex-

tent, p (3.3.3) provides an approximation of the true joint model

] .
[t+7,t+7+n] n

risk pft bt in (3.3.1)). For simplicity, we will henceforth omit the subscripts

of pft ripren and pft Criprinp nd use p’ and p/ for the true joint model risk

measure and our proposed joint model risk measure estimate of a risk model j.
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In order to gauge the degree of similarity between the theoretical and es-
timated measures of model risk, we first compute Pearson’s linear correlation
coefficient CM = Correl(p™, p™) between the two series to see whether our FZ
scoring function-based joint model risk estimate p™ approximates the true joint
model risk measure p™ across the set of risk models M which is the set of risk
models discussed in Appendix [3.B] As the correlation only considers the strength
of the linear relationship between the true and estimated joint model risk across
the set of models M, we also use the 7™ = 7,(p™, p™) correlation coefficient
from Emond and Mason| (2002) that extends the nonparametric Kendall’s 7, mea-
sure, in order to estimate the possibly nonlinear association between the true and
estimated joint model risk measures over a set of models M. The values of 7,
can vary from -1 (perfect inversion) to 1 (perfect agreement), with a value of 0
indicating that the true joint model risk measure and the corresponding scoring
function-based joint model risk measure estimate are independent.

In addition, we also compute the proportion 17 of true joint model risk (p’)

explained by our joint model risk estimate (p’) over the model risk evaluation

period, defined as 17 = p/ /p’.
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3.3.2 Scoring function-based individual model risk mea-
sure

In order to consider individual VaR and ES model risk, assuming that the true
VaR and ES (v, ) are known, we calculate the average absolute biases (187, B?) of
the estimated VaR and ES from the true risk measures over the evaluation period

from ¢ to t + n as follows:

t+n t+n
1 1

Bg:nH-Z@g_m, Bg:n—i-l.z

i=t 1=t

el —eil. (3.3.4)

In practice, we can derive the individual VaR and ES model risk measures
(pl, pl) of model j built upon the optimum multipliers (z;;,x2;) in as-
signed to the estimated VaR and ES (9;, é;) over the model risk evaluation period

fromt+7tot+7+n:

1 t+7+n 4 ' 1 t+7+n ' '
p{}:n+1.,z |0] — @1, - 0], plg:nle..Z 60 — 9, - €. (3.3.5)
i=t+T1 i=ttr

CM CM M

2 Tap and TM to measure the level

Similar to C™ and 7", we compute
of correlation between our scoring function-based individual model risk measures
in (3.3.5) and the true values of individual model risk computed in equation

(3.3.4)), over a certain evaluation period across a set of models (M) considered:

CM = Correl(BM, pM),  CM = Correl(BM, pM).
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=1 (B ), T =T.(BM p).

For model j, ) = p? /BI () = pI/B?) shows the proportion of true model risk
captured by our model risk measure in terms of the VaR (ES) measure over the

evaluation period.

3.3.3 Simulation study

To verify how our F'Z scoring function-based model risk estimation methodology
works in a simulation setting (which allows comparisons with the true model
risk), as in |Dimitriadis and Bayer| (2019), we implement three different positively
homogeneous F'Z scoring functions of degree b = 0, 0.5 and —1, presented in Table
3.3.1l These are natural examples of scoring functions, and we denote them by
S1, So and S3. These degrees of homogeneity correspond to Go(z) = —log(—=2),
Go(z) = —/—2z as well as Go(2) = —1/z, respectively. In order to put the

emphasis on the ES (Ziegel et al., 2017)), we fix G1(z) = 0 in (3.2.3).

Table 3.3.1: Three FZ scoring functions with different degrees of positive
homogeneity

Positive homogeneity (b) FZ scoring function
0 Slz—lﬂ{r<v}(’u—7“)+ + log(—e) —
0.5 Sy =57—=(E1{r<v}v—r)— v—e)—i—
-1 Sg,:%( H{r<ovlv—r)—(v—re))+1

ﬁ

("b

€

In our simulation study, the GARCH(1,1) model with Student’s ¢ distributed

residuals, specified in (3.2.7)), is used as the data generating process, denoted by
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DGP1. We also adopt the Markov Switching GARCH(1,1) model with normal

disturbances (Klaassen, 2002) as DGP2 shown below:

~

Tt = hstZt7 Zt ~ iid N(O, 1), St — {1, 2}, (336)

2
where iLSt =W, + ﬂAstTf_l + s, Zpijibi,tq, Ws, Bst and s, > 0;
i=1
s; = 1 or 2 shows the possible market state at time ¢; p;; denotes the probabil-
ity of state 7 at time ¢ conditional that the market is in state ¢ at time ¢t — 1;
ﬁi,t,l denotes the conditional variance in state ¢ at time ¢ — 1. The model pa-
rameters used for simulation in DGP2 are: w; = 1.89606_04,51 = 0.15841 and
41 = 0.41507;@y = 2.4130e7%, 3, = 0.56147 and 45 = 0.41507;p;, = 0.4323
and pge = 0.9992, estimated from the S&P500 daily returns from 2001/01/01 to
2018/05/20 (4492 observations). Then we simulate 5,000 returns by each data
generating process and compute daily VaR and ES measures using rolling win-
dows of length 1,000 across the set of models.  With respect to the F'Z scoring
functions (57, Sz and S3), Figure compares the mean values of true joint
model risk (shown in horizontal lines) with the average estimated joint model risk
(shown in bars) over the time period, for various (VaR, ES) risk models based
on the simulated data generated by the aforementioned two data generating pro-

cesses, DGP1 and DGP2. Regarding the F'Z scoring function-based joint model

risk measure in (3.3.3)), at 2.5% critical level we calculate the estimates for the
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given set of models using a rolling window with the length of ny = 250. This
choice of the window length® for calculating model risk follows the supervisory
requirement by the |Basel Committee on Banking Supervision| (2019) that a one-
year backtesting period (i.e. 250 trading days) is needed to confirm the quality of
a model. We compute the true values of joint model risk using (3.3.1). The mag-
nitude of joint model risk based on our methodology is generally smaller than
its true value, with a few exceptions. Historical Simulation (HS) is the worst
method in forecasting the daily 2.5% VaR and ES under the two different DGPs
since it has the highest level of joint model risk among all the models examined.
The parametric approaches seem to perform best (except for the EWMA model,
which is the second-worst due to high persistence to the shocks), followed by the
semiparametric models. This is in line with the results reported in Table 5 of
Patton et al.| (2019), showing that the parametric models estimated by Maximum
Likelihood estimation outperform the F'Z0 minimization-based semiparametric
models in computing risk estimates.

From a dynamic perspective, over two different model risk evaluation windows
ny = 250 and ny = 1,000, Figure gives the evolution of true joint model risk
(on the left side) and the F'Z0-based joint model risk estimates (on the right
side) of the daily (VaR, ES) at 2.5% coverage level across various risk models,
for returns simulated via DGP1. In terms of the joint model risk measures in
the right panel, the measure based on the shorter window (n; = 250) indicates

more variation of joint model risk than the measure based on the longer eval-
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uation window (ny = 1,000). The estimated model risk illustrated in the right
subpanels presents a high resemblance to the dynamics of true model risk in the
left subpanels. As expected, the joint model risk computed over a window of
ny = 250 is more sensitive to market events as indicated by the more volatile
solid line in Figure for the EWMA model. Beyond that, using a long model
risk evaluation window such as n3 = 100, 000 is not sensible due to the possible
structural breaks in the data generating process.

To get a closer look, we report three measures of similarity between the true
joint model risk and our joint model risk estimates'® in Panel A of Table [3.3.2]
taking into account the risk models and time consistency simultaneously. The
first measure is the average correlation (C™) between the true and estimated
joint model risk of various (VaR, ES) models over time. These correlations are
at least 0.946 (0.800) under DGP1 (DGP2), suggesting the proposed F'Z-based
joint model risk measures closely related to the true joint model risk. Considering
scoring functions with different levels of homogeneity, we find that S3, with pos-
itive homogeneity parameter b equal to -1, offers the highest correlations, whilst
Sy (b= 0.5) leads to the lowest correlations in general. Also, the correlations are
higher when the model risk evaluation window is longer. The second measure
we report is the average explanatory power (™) over a set of models M. We
find that the joint model risk measure is able to capture on average more than
50% of the true model risk of joint risk estimates under these two data generating

processes. As a third measure we look at the degree of similarity 7!, and find
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that, our F'Z scoring function-based joint model risk measure exhibits a signifi-
cant resemblance to the true joint model risk measure, with 7 equal to at least
0.536 (0.644) under DGP1 (DGP2).

Figure depicts the dynamic correlation between the true and estimated
joint model risk of a series of models when the estimated joint model risk is
calculated based on S, Sy and S3 in two different evaluation windows n; = 250
and no, = 1,000, under DGP1. The joint model risk measure based on the -1
homogeneous F'Z scoring function (S3) in a given evaluation window exhibits the
strongest dynamic correlation with the true joint model risk, followed by the S;-
based joint model risk measure. Moreover, Figure shows the distributions
of the F'Z0-based joint (VaR, ES) model risk over an evaluation window of n;
= 250 for the selected models when simulating 5,000 paths of 1,000 returns by
DGPI1. One-step ahead VaR and ES are calculated at 2.5%. We find that the
EWMA model is the worst-performing in making risk estimates as evidenced by
the highest mean and largest dispersion of joint model risk estimates among the
selected models.

For chief risk officers of companies as well as for regulators it would be very
useful to be able to disentangle the effects of different sources of model risk.
Hence, we decompose the joint model risk into estimation risk and specification
risk in the simulation study, illustrated in panel (a) of Figure B.3.6l To evalu-
ate the estimation risk of a given model, we first estimate the parameters of a

certain model based on the return series of S&P500 index from 03/01/2000 to
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Figure 3.3.5: Histograms of FZ0-based joint model risk estimates of selected
risk models
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This figure shows the histograms of the FZ0-based joint model risk over an evaluation
window of n1 = 250 for the selected models, based on the simulated 5,000 paths of 1,000
returns under DGP1. The plots are ordered from left to right and top to bottom by the
ascending values of mean and standard deviation.
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31/12/2007, simulate 5,000 paths of 1,000 returns and then re-estimate the model
in a rolling window of 1,000 to make one-step ahead risk estimates at 2.5% level.
Subsequently, we compute the FZ0-based estimation risk in an evaluation win-
dow of ny = 250 for a given set of risk models. The F'Z0-based joint model risk of
a certain (VaR, ES) model, comprised of estimation risk and misspecification risk,
is calculated based on the simulated data generated by the GARCH(1,1) process
with standardized Student’s ¢ innovations (TFP). Comparing the GARCH(1,1)
models with the fully parametric normal and skewed t disturbances (NFP and
SKTFP), we notice that SKTFP is less misspecified than NFP but has a larger
estimation risk due to the higher number of parameters included in the model.
Comparing the FHS, the EVT and the fully parametric method (FP) applied to
the distribution of the standardized residuals extracted from the GARCH(1,1)
models, FHS has the highest estimation risk, followed by EVT and FP, as dis-
played in panel (b) of Figure [3.3.6]

Regarding the F'Z-based individual ES model risk measure, the average cor-
relations CM between the true and estimated values of ES model risk of various
models are shown in Panel B of Table [3.3.2] which share similar values to the av-
erage correlations (C*) between the true and estimated joint model risk in Panel

A, Table . Supplemental to CM, the values of 7™ are above 0.5 generally,

signaling a high degree of similarity between the true and FZ-based ES model

risk measures. Generally, for both DGP1 and DGP2, the F'Z-based ES model

risk measures can explain more than half of the true model risk of ES estimates
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Figure 3.3.6: FZ0-based joint model risk

(a) Estimation risk and misspecification risk

Normal (N)

Student's t (T)

Skew t (SKT)

This figure shows the components of F Z0-based joint model risk of (VaR, ES) models at
a = 2.5%. We simulate 5,000 paths of 1,000 returns using model parameters estimated
from the SEP500 index from 03/01/2000 to 31/12/2007. Panel (a): the data generating
process is the GARCH(1,1) process with Student’s t innovations (TFP). Panel (b): the
FHS, EVT and FP estimation methods are implemented for the normal, Student’s t
and skewed t distributions of the standardized residuals.
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as shown by the average explanatory power (i) in Panel B. Hence, the ES
model risk measure via F'Z minimization is almost as efficient as the F'Z-based
joint model risk measure. Nevertheless, the true and estimated VaR model risk
are less correlated under DGP1 and DGP2 as seen in Panel C of Table [3.3.2]
indicating that the F'Z-based VaR model risk measure is less adequate than the
FZ-based ES model risk measure.

The simulation study confirms that our F'Z scoring function-based joint model
risk and ES model risk measures are practical tools to measure the model risk of

risk models.

3.4 Properties of model risk measures

To facilitate the regulation of model risk measures, similarly to other measures of
risks (e.g., market risk), we investigate whether the proposed F'Z scoring function-
based model risk measure has the coherence properties of an acceptable positive
measure p(-) of risk (McNeil et al., 2015), where X and Y are returns of two
different financial assets:

i) Subadditivity: p(X +Y) < p(X) + p(Y).

i) Positive homogeneity: for any positive number h € R™, p(h- X) = h - p(X).
ii1) Monotonicity: for random variables of payoffs X and Y with X <Y, p(X) >
p(Y).

iv) Translation invariance: for any cash position represented by a € R, p(X+a) =
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p(X) —a.

Concerning the above axioms, we consider the likewise properties for our pro-
posed model risk measures which are defined as positive measures in this chapter,
in contrast to negative VaR and ES estimates following the sign convention of risk
measures used in the scoring function literature. Let pM2( X, @g;, ég() be the joint
model risk of a risk model j with ©% and & being the VaR and ES estimates!!
made by model j for the financial asset X, and let pM#(X| Uk, é])'{) be the scor-
ing functioned-based ES model risk (similar notation for asset Y or a portfolio
X +Y). The following properties are considered for the joint model risk and ES
model risk measures:

1. Subadditivity pMP(X+Y, 0%,y Expy) < pPME(X, 0%, ) +pME(Y, 0%, 6)).
This property lines up with the diversification effect that the joint model risk
of a certain risk estimation model fitted to a diversified portfolio of different
assets is lower than the sum of the joint model risk of the same risk model
applied to each asset.

2. Positive homogeneity
For any h € RY, pMB(h- X h -t h- &) = h- pME(X, 0, &),

The joint model risk will be scaled by the same size as long as all the inputs

are rescaled by a positive number h.

3. Monotonicity
If Jox — ox| > [0% — vx| and |éx — ex| > [6% — ex|, p" (X, 0k, k) >

P (X UX7€X)
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As expected, the pair of risk functional (0%,é%) for the first model is more

distant from the perfect risk estimates (vx,ex) than the corresponding risk

estimates of the second model (9%, é%), then it will have higher joint model
risk.
4. Translation invariance

For a constant a > &, pM*(X + a, %% — a,& — a) = pME(X, 0%, &).

This is also called risk free condition, stating that the joint model risk is

expected to be unaffected when a constant a is added to X and risk estimates

are adjusted with the same amount.

We verify via simulations that our proposed model risk estimation method-
ology satisfies the properties of positive homogeneity, monotonicity as well as
translation invariance. We place a particular focus on the subadditivity property
as Danielsson et al.| (2013) do for the VaR measure. Given a certain risk model,
we examine whether our model risk measure applied to a portfolio consisting of
two assets is lower than the sum of model risk of individual assets (if not, we
have a violation of subadditivity) in the following simulated scenarios displayed
in Figure [3.4.1], which presents the percentage of subadditivity violations of joint
model risk and ES model risk measures.

Consider that assets X and Z are independent but share the same Student’s ¢

distribution with degrees of freedom v, = 2, 15, = 4, v3 = 10, and v, = 50, and asset

Y defined as Y = ¢X + V1 — 27, so X and Y are correlated with correlation
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coefficient ¢. Consider two cases: in the first one X and Y are independent
(¢; = 0); in the second case X and Y are correlated with ¢; = 0.5. We then
simulate 500 paths of 3,250 returns by the Student’s ¢ distribution with different
degrees of freedom for the two risky assets, X and Y. Equally weighted portfolios
(X 4+ Y) are constructed based on the simulated data. We calculate the 1%,
2.5% and 10% daily VaR and ES for the two assets and portfolios, using the
Historical Simulation method (HS), and then compute the FZ0-based model
risk, including joint model risk and ES model risk, in a model risk evaluation
window of 250 days. As highlighted in Figure the portfolio with higher
correlations leads to a higher subadditivity violation rate. The ES model risk
measure has a higher violation rate of subadditivity than the corresponding joint
model risk measure. Generally, the closer the return distributions of assets are
to the normal distribution (the Student’s ¢ distribution converges to the normal
distribution as the degree of freedom increases to the infinity), the higher the
rate of subadditivity violations. In general, the higher the « level, the higher the
violation rate. Thus, the subadditivity property is not guaranteed to be satisfied

by the model risk measures.

3.5 Empirical Investigation

Here, we focus on several types of assets using daily market data from 01/01/1980

t020/02/2019, downloaded from DataStream: 1) BARCLAYS equity price (BAR-
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CLAYS); 2) S&P500 Index (S&P500); 3) Gold bullion price (GOLD); 4) Stan-
dard & Poor’s Goldman Sachs Commodity Index total return (GSCI); and 5)
FX EUR/USD rate (EUR/USD). First, we compute the daily log returns and
construct the out-of-sample daily VaR and ES measures using rolling windows of
1,000 observations for the set of models M. Next, we find the optimized multi-
pliers for the pair of risk by minimizing the F'Z scoring functions in a multiplier
estimation window of the length 2,000 (7 = 1,999) as in|Nolde and Ziegel (2017b).
We consider the S; and S3-based model risk measures in the empirical analysis
since the Ss-based model risk measure does not cover well the true model risk, as
illustrated in Figure [3.3.4, We apply our scoring function-based model risk mea-
sures to market data using a model risk evaluation window with length of 250
(n = 249), as the Basel Committee on Banking Supervision| (2019) recommends
the prior 12 months (around 250 trading days) as the backtesting period for risk
measures.

Table presents the dollar values of annualized average S; and Ss;-based
joint model risk of (VaR, ES) risk models at 2.5% level, assuming that an investor
holds a position of 1 million dollars in each asset. The EWMA model performs the
worst, leading to misestimation of risk averaging $398,250. The GFZ, FZ1F and
Hybrid models proposed by [Patton et al. (2019) are less affected by joint model
risk than the GARCH(1,1) model with normal innovations (NFP) and the His-
torical Simulation (HS), in line with the results in their paper. The GARCH(1,1)

models combined with the Extreme Value Theory (TEVT and SKTEVT) as well
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as the SKTFP model carry the lowest average joint model risk. Given a certain
asset, the S7 and Ss-based joint model risk measures are able to identify the same
risk model in general as having the lowest level of joint model risk, but the joint
model risk measure based on S3 is more conservative due to the larger values of
joint model risk compared with the measure based on Sj.

Panel (a) of Figure captures the dynamic joint model risk based on F'Z0
(S1) of the daily 2.5% VaR and ES measures across various risk models applied to
the daily log return series for BARCLAYS from 01/01/1980 to 20/02/2019. This
signals the rising and significant joint model risk of various (VaR, ES) models
during the crisis periods, confirming the discussion on model risk in |Danielsson
et al.| (2016)). Our method reveals the dynamics of model risk corresponding to
the market events, though there is a a-year delay due to the model risk evalu-
ation window of 250 trading days. Out of all the models studied, the EWMA
and HS methods are the least reactive to the market and thus display the highest
joint model risk. We also find that the GARCH based models adapt to the price
movements more quickly and exhibit lower joint model risk. Misspecification
risk generally contributes more than estimation risk to the (FZ0-based annual-
ized) joint model risk, and usually peaks during the turmoil periods, when the
GARCH(1,1) model with normal innovations (NFP) produces daily risk estimates
at 2.5% for BARCLAYS, as shown in panel (b) of Figure [3.5.1]

Additionally, Figure displays the dynamics of optimized multipliers re-

quired for the daily 2.5% VaR and ES of several risk models, obtained via F'Z0
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Figure 3.5.1: Dynamic FZ0-based annualized joint model risk in dollars for
BARCLAYS

(a) Comparison of joint model risk of various models
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(b) Decomposition of joint model risk of NFP
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This figure shows the dynamic F Z0-based joint model risk of daily (VaR, ES) estimates
at a = 2.5% for various models in panel (a) as well as the decomposition of F' Z0-based
joint model risk of the GARCH(1,1) model with normal innovations (NFP), based on the
log returns of BARCLAYS from 01/01/1980 to 20/02/2019. The model risk evaluation
period is 250. The average absolute ES across various models is about 9 x 10° dollars.
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minimization, based on daily returns of BARCLAYS. The models examined in
this figure tend to underestimate risk due to the multipliers for the risk estimates
being larger than 1 most of the time.

The Basel Committee on Banking Supervision| (2019) requires using a 10-day
trading period for large cap equities and a 60-day trading period for exchange
rates for risk calculation purposes, so we also compute risk estimates over a 10-
day and 60-day period, for BARCLAYS and EUR/USD, accordingly. In Table
we report the dollar values of annualized average joint model risk of the
10-day (60-day) risk measures for BARCLAYS (EUR/USD) with the average
annualized absolute values of ES for easy comparison, assuming that an investor
holds a position of 1 million dollars in each asset. We extrapolate to multi-day
risk estimates from daily risk measures using the “square root of time” rule'?,
as recommended by the |[Basel Committee on Banking Supervision| (2019) and
following the practice of companies. The GARCH model with F'Z minimization
(GFZ) has the least model risk as compared to the average absolute values of the
corresponding ES; whilst the EWMA model is the most affected by model risk
when applied to these two assets. Comparing Table and Table [3.5.2] the
joint model risk of the 10-day risk measures for BARCLAYS is about 1-4 times
as high as the joint model risk of daily risk measures. For the exchange rate, the
joint model risk of the 60-day risk measures is about 2-4 times the joint model
risk estimate of daily risk measures, so the dependence of the joint model risk

estimate on the time horizon is not linear.
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Table 3.5.2: Dollar values of annualized average joint model risk of multi-day

risk measures

BARCLAYS EUR/USD
Models Avg. |ES]| S1 Ss Avg. |ES]| S1 S
TFP 896,532 205,370 224,626 244,629 39,789 46,938
SKTFP 894,279 204,047 224,574 241,536 39,194 46,672
NFP 800,890 109,065 123,362 217,672 35,371 45,582
TEVT 901,541 210,180 229,640 235,270 31,383 37,881
SKTEVT 901,627 210,368 229,855 235,230 31,312 37,896
NEVT 903,136 190,638 199,306 234,576 32,074 39,447
EWMA 878,577 313,232 292,048 224,115 77,304 90,682
TFHS 899,498 202,466 219,875 236,164 31,090 37,378
SKTFHS 899,558 202,818 220,279 236,124 30,933 37,510
NFHS 902,109 183,341 188,568 235,521 31,826 39,587
GFZ 887,250 125,872 129,999 236,154 20,894 20,485
FZ1F 941,150 207,973 199,803 232,316 26,357 30,977
Hybrid 922,855 195,070 194,253 242,548 25,881 27,073
HS 1,063,175 314,956 284,969 253,760 48,129 51,934

This table reports the dollar values of annualized average joint model risk of the 10-day
(60-day) risk measures at o« = 2.5% for BARCLAYS (EUR/USD) from 01/01/1980 to
20/02/2019, as compared to the average of absolute ES, assuming an investment of 1
million dollars in each asset. The values in bold are the lowest dollar values of average
annualized joint model risk.
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In Table we present the backtesting results (1 for pass and 0 for failure)
of several ES and VaR backtests for various risk models applied to the daily return
series of BARCLAYS from 03/01,/2000 to 01/01/2002 before and after the opti-
mum multipliers, obtained based on F'Z0, are used to improve the precision of the
2.5% daily VaR and ES estimates. With respect to VaR backtests, we use the like-
lihood ratio unconditional coverage test (UCy.r) developed by Kupiec (1995) and
the likelihood ratio conditional coverage test (C'Cy,g) by (Christoffersen (1998]),
which remain widely used (Nieto and Ruiz, 2016) amongst academics and prac-
titioners. We also include the dynamic quantile regression-based test (DQ) for
VaR, proposed by Engle and Manganelli| (2004), considered a more effective VaR
evaluation method (see Berkowitz et al|2011). To backtest ES, we apply the
exceedance residual test (ER) of McNeil and Frey| (2000)), the Z, test of |Acerbi
and Szekely| (2014)) as well as the unconditional /conditional coverage test (UCgg
and CCgg) of Du and Escanciano| (2016) to assess the frequency, magnitude and
independence of excessive losses (see a detailed description of these ES backtests
in Section [2.3.2). Our results show that adjusting for model risk does have a
positive effect on backtesting, and the models suffering from model risk which
fail the backtests can survive the backtesting procedure after adjusting the risk
estimates for model risk, as indicated by 0* in Table [3.5.3|

As expected, when increasing the « levels of the VaR and ES estimates, the
joint model risk of the risk models decreases. This is illustrated in Table [3.5.4

which reports the average annualized F'Z0-based joint model risk of risk measures
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at 1%, 2.5% and 5% coverage levels across various models applied to the daily
return series of BARCLAYS from 01,/01/1980 to 20/02/2019. This is also high-
lighted in Figure [3.5.3] showing the average joint model risk of TFP, TFHS and
HS against « levels. TFHS has less joint model risk than TFP at low coverage
levels, since TFHS is better at capturing the extreme losses in the tail, while HS

is the worst, as expected.

Figure 3.5.3: Average FZ0-based joint model risk along with multiple «
levels
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This figure shows the average joint model risk of models TFP, TFHS and HS against o
levels, computed over 250 days, based on BARCLAYS from 01/01/1980 to 20/02/2019.

Beyond the scoring function-based joint model risk measure, we also examine
the F'Z-based ES model risk measure. Figure displays the ratio of the F'Z0-
based ES model risk over the average of absolute ES at 2.5% critical level with
a model risk evaluation window of 250 across various risk models applied to the
daily return series of BARCLAYS from 01/01/1980 to 20/02/2019.

After the Lehman Brothers’ collapse in 2008, the model risk of the 2.5% ES
computed with the HS model, the EWMA model and the GARCH(1,1) with

normally distributed innovations (NFP) inflate to more than 60%, 40% and 20%,
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respectively, of the average of absolute ES in the evaluation window, whilst the
ES model risk is only around 10% of the average absolute ES for the other models,
see Figure[3.5.4] Moreover, in Table [3.5.5] we report the average ratio of ES model
risk associated with the 0 and -1 homogeneous F'Z scoring functions (S; and S3)
over the absolute value of average ES at 2.5% level for various assets over the same
set of models and evaluation window of n; = 250. Generally, the F'Z-based ES
model risk of risk models applied to the S&P500 Index is much higher compared
to other asset classes. Except for the worst-performing models (EWMA and HS),
the average ratio of ES model risk over the average absolute ES varies between
2% to 10%. Similarly to the joint model risk, the S3-based ES model risk measure

is generally higher than the Si-based ES model risk measure.

3.6 Conclusions

In this chapter, we disentangle the components of model risk of financial market
risk models based on strictly consistent F'Z scoring functions applied to the risk
functionals (VaR, ES). We show that, when model risk is present, the ordering
of (VaR, ES) models is sensitive to the F'Z specification function, although the
model ranking is not sensitive to the choice of homogeneous F'Z scoring function
when the pair of (VaR, ES) is estimated at small critical levels (e.g., 2.5%).
Instead of focusing on model comparison, we quantify the joint model risk of

(VaR, ES) risk models and also the ES model risk solely, based on the F'Z scoring
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functions. The proposed model risk methodology framework is confirmed with a
simulation study in which we use three specific F'Z scoring functions which are
0, 0.5 and -1 positively homogenous. We find a high similarity between the true
and estimated model risk of (VaR, ES) risk measures as well as for the ES model
risk, across various risk models, with correlations varying from 0.8 to 0.987, with
an explanatory power above 50%.

In our simulation analysis, the newly proposed measures of joint model risk
and ES model risk satisfy numerically all coherence properties of a measure of
risk, except for the subadditivity property. This essential property, sometimes
called the diversification of risk property, is not always satisfied numerically but
it holds true in most of our simulated scenarios when risk measures are estimated
at small « levels (e.g., 1% and 2.5%). The empirical results point out that the
EWMA model and Historical Simulation have a very high level of joint model
risk and ES model risk among all models considered, particularly during extreme
events. In addition, the backtesting performance of these models is improved
upon adjusting for model risk.

The scoring function-based model risk methodology could facilitate other ex-
tensions for quantifying the model risk of risk models. For instance, by replacing
the F'Z class with the GPL class, the individual VaR model risk can be examined
in a similar manner and this may invite further research. Other interesting future
research could consider the model risk of using the “square root of time” rule and

also consider theoretical proofs for the properties of model risk measures.



Appendices

3.A Proofs

The following proofs are adapted from [Patton| (2019)).

Proof. Proof of Proposition la). Here we show that under assumptions 1)-3),
E [S¢,0(re, 0P, eP)] > E [Sg,0(re, 0, é')] implies that FP C F* for all ¢, which
in turn implies E [S%,(ry, 07, 67)] > E [S¢,(ry, 07", ¢')], where Spy is any loss
function from the F'Z class.

First, we prove that E [S%,(ry, 07, eP)] > E [S§,0(re, 01, 61)] = FP C F for allt.
Starting from E [S%,o(r, 0F,6F)] > E [S&,(ri, 07, é;)] we assume that Ff* C
FP for at. Thisimplies that E [Sg (1, 07, &) FP] > E [S¢,0(re, 07, eP)|FF] a.s

for ¢, since (07, &) € FA C FP and thus E [S%,(re, 07, €)] > E [S%,o(re, 0P, €P)]
by the Law of Iterated Expectations.

The inequality E [S¢,,(re, 07, é)] > E [S&,0(re, 0P, €P)] can be satisfied if and
only if E [S§,0(rs, 01, 6)|FP] = E [Sg,0(re, 07, eP)|FP] as. for t.

The FZ class is restricted to the assumption that any pair of cumulative distri-

134
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bution function F}, i € {A, B} from this class, are strictly increasing with unique
a-quantiles (Fissler and Ziegel, 2016)). Let 9 be the unique solution to a = F}(v}),
and ¢j = L [ %o fi(x)dx, for i € {A, B}. The necessity and sufficiency of strict
consistency of the F'Z class for joint VaR and ES estimation (see details in [Fissler
and Ziegel, 2016), including F'Z0, implies that o} is the solution to the following

minimization problem:

]

of = argminE | S2,,(rs, 0, )| Ff, € = é/_ﬁ xfﬁ(:c)d:c] , forie {A, B}
(3.A.1)

Corroborating this with E [S%,0(r, 07, &) FP] = E [Sgy0(re, 08, 68)|FP] as.
for all t, leads to (9, é/') = (07, eP). However, the last equality is in contradiction
with assumption 1) that the nested information sets do not give identical optimal
forecasts.

Next, we are going to prove that F? C F/* = E [S%,(ry, 0F,eP)] > E [S¢,(r, 01, ¢")],
where Sryz is any loss function of the F'Z class. From the necessary condition
of strictly consistent F'Z scoring functions (Fissler and Ziegel, 2016), for any
S € S%,, the solution to the minimization of expected losses based on any strict
consistent function with the F'Z class is defined in equation . It is straight-
forward to show that o = E[1{r; < ©!}|F}] and that this condition holds for all
possible distributions of 7. Since FF C F for all ¢, E [S%(r, 07, eP)|FP] >
E [S*(ry, 0%, €1)|F{*], for any S* € S%,. Applying the Law of Iterated Expecta-

tions, we have E [S®(ry, 07, €P)] > E [S*(r;, 0, &')], for all S* € S¢,. O
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Proof. Proof of Proposition 1b). In the following, we give the analytical proofs
for Proposition 1b) under three scenarios.

(i) First, when the information sets are non-nested violating assumption 1),
we consider a simple example below: Y = —(X 4 Z), where X is uniformly
distributed as Unif(0,10), Z has a triangular distribution 7ri(0,12), and X and
Z are independent.

Given that o = 50%, we assume that the risk estimates based on model A
condition on X and those based on model B condition on Z. Since X and Z are

independent, then:

0" = —(X + Median|Z]), Median|Z] = M[Z] = 3.51,
C=EY|Y<i|=-E[X+Z|Z>M[Z]|=-EX]|-E[Z|Z>M[Z],
* = —(Z + Median[X]), Median|X] = M[X] =5,

C=E[Y|Y<|=-EX+Z|X>MX]]=-E[Z]-E[X | X >M[X].

For a critical level a, considering two increasing continuously differentiable func-
tions G; and Go such that E[G1(X)] exists, lim,, - G2(z) = 0 and G} = Ga,

and a realization denoted by r, the class of F'Z scoring functions is as follows:

Spz(r,v,e;0,G1,Ga) = (< — @) (Gi(v) — Gi(r)) (3.A.2)

+63(6) (A 1panv=1) = (0= )) = (o) - Ga)
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Next, within the FZ class we calculate the expected losses, Sy and S, depending
on G1(z) and Go(z) as in (3.A.2). Let Gi(z) = 0, Ga(2) = —1/z, and Go(z) =
—log(—2), and thus Sy is the expected loss. Also, taking Gi(z) = 0, Gy(2) =
—1/2%, and Gy(2) = —1/z, allows the computation of S;. The expected loss Sy

(the same expression is obtained for Si!) associated with model A is:

S 0%.%0,Gr, @) = IR (X 1 2) < (X + M(Z])} - (Z - M[2)
+ eGy(e) — Ga(e) — Ga(e)E[v]
(?2(6)

= Z2OR[1{Z > M[Z]} - (Z = M[Z])] + eGale)

— Ga(e) — Ga(e)E[—(X + M[Z])].

For model B, the expected loss S£ (the same expression is obtained for SP) is

computed below:

SB(y, 1%, e% a, Gy, Gy) = E[1{X > M[X]} - (X — M[X])] + eG5(e)

(;2(6)

— Ga(e) — Ga(e)E[-(Z + M[X])].
Finally we obtain that:
Sgt=2489 < S8 =2532;,  Sit=-0170 > SP=-0.191.

(ii) Secondly, our setup is that based on the nested information sets, the
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risk models (A and B) are subject to estimation error, though they are correctly
specified: we have that Y = —(X+Z2), where X and Z are independent, uniformly
distributed as Unif(—10,0) and Unif(0,12), respectively.

Then, the probability density function of Y is easily derived as:

;

124
T, for —12<y< -2,

fr(y) = %, for —2 <y <0,

10—y
120 °
\

for 0 <y < 10.

We compute risk estimates at a = 50%. model A gives optimal risk estimates

without any conditioning information as below:
0" = Median]Y]| =M, =—-1, e =E}Y|Y <] =E[Y |Y <M,].

Model B conditions on Z, and makes the risk estimates by estimating Median[X].
Forecaster B estimates Median|X| using n = 1 observation of X. Since X and

Z are independent, the risk estimates are predicted as:

éb:E[Y|Y§@b]:—E[X+Z|X2X}:—]E[X|X2X}—E[Z].

To compute é°, we will use the result below, since X and X have the same
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distribution:

E[X|X2X]:E[X-1{Xz)~(}}:E[E[l{XZXHX}X]

Therefore, ¢ = —E [F,(X) - X]-E[Z]. For X ~ Unif(L,U), we have E [F,(X)X] =
£ (L+20).
The expected loss Sy (the same expression is obtained for S) associated with

model A:

Gg(e)

S’é(y’ ﬁaa éa; O!, G17 G?) = E []l {Y S My} . (My - Y)]

+ eGa(e) — Ga(e) — Ga(e)M,,.

For model B, we calculate the expected loss S (the same expression is obtained

for SP) as follows:

S()B(ya @ba éb> «, Gla GZ) =

GZOEe)E []1 {X > 5(} . (X_)Z)] + eGs(e)

—G(e) — Ga(e)E[—(X + Z))

To compute SZ and SE, since X and X have the same distribution, we will use
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that

E[X|X2X]:E[)~(-1{X2X}}:E[E[l{XZXHX}X]

—E|(1- F(X))- X| = E[X] - E[F.(X)X].
Thus we get that:
St =1853 > S8 =1.466;, Si'=-0852 < SP=-0.231.

(iii) Finally, we consider the case of misspecified models, although these models
are without estimation error given the nested information sets. For simplicity,
assume that the DGP is Y = =X, X ~ Unif(0, 10). The parameters of the linear
models A and B (subject to misspecification error) are different from (0,1), and
let (Bo, 1) = (0.33,0.67) and (79,71) = (—0.25,1.25) for A and B, respectively.
In this example, models A and B are conditioning on the same information set
and they are free of estimation error, predicting the risk estimates at o = 50% as

follows:

0= —f— /X, & =-E[X-1{(1-8)X >},

=y —mX, &=-EX -1{1-7)X>%}.
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In the following, we will use that:

/

1_Fx<1f?31>7 fO’f’ﬁ1<]_,

E[1{(1-51)X > B}] = Fx< 5o ), for By > 1,

1-p1

\1{50 <0}, Jor B =1.

(

E[X~1{XZ%}}, for By < 1,

E[X-1{(1-B)X > Bo}] = E[X-1{X§ lf%l}}, for By > 1,

kIET[X] -1{fy, <0}, for By = 1.

A similar expression is obtained for model B by replacing (5y, 51) with (7o, 71)-
The expected loss Sy (the same expression holds for Si') associated with model

A is derived as:

S (y, 0%, &% o, G, Gg) = (1 = /ﬁ)GZfe)E[X X > - foﬁl )
GQ(@) 60
— Bo 5 E[1{X > 1—51}]

+ BoGale) + frGa(e)E[X] + eGa(e) — Gale).
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In case of model B, the expected loss SP (the same expression holds for SP) is:

S()B<y7’0b7éb; a7G17G2) = (1 - ’71>G2(6)

Y0
E[X X < {7

2 mpx < oy

o L —m

+7G2(€) + 1G2(e)E[X] + eGa(e) — Gale).
Numerically, the results of this example conclude our proof:

St =1.883 < SP=116.504; S = —-0.259 SP = —2410.

3.B Risk measurement models

In our investigations we use a set of widely known risk models considered in
Nolde and Ziegel (2017a)): the nonparametric method includes Historical Simu-
lation (HS); the semi-parametric methods include the GARCH(1,1) models with
the normal, standardised Student’s ¢, and skewed ¢ innovations, combined with
Filtered Historical Simulation (NFHS, TFHS, and SKTFHS). The parametric
methods include the GARCH(1,1) processes with the normal, standardised Stu-
dent’s ¢, and skewed ¢ distributed innovations (NFP, TFP, and SKTFP), as well

as the same distributions combined with the Extreme Value Theory methodol-
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ogy (NEVT, TEVT, and SKTEVT). In addition, we include the newly proposed
semiparametric models based on F'Z0 minimization of Patton et al.| (2019) (FZ1F,
GFZ and Hybrid), and add the EWMA model to the set of parametric approaches.
These risk estimation methods are used to compute the ex ante one step ahead
VaR and ES measures, at a given significance level, using rolling windows of

length L = 1, 000.

3.B.1 Nonparametric approaches

Relying on the historical data series of returns {r}, we use the easy-to-implement
Historical Simulation model (HS) to compute model-free the daily VaR and ES

at « significance level at time ¢ over the previous L = 1,000 observations:

-1
> i L < 0%}
o' = percentile {{r}i:}:, 10004} , o efs = Z:t;_Ll . (3.B.1)
> M <95}

i=t—L

3.B.2 Semiparametric approaches

For the GARCH(1,1)-FHS models, we incorporate the GARCH(1,1) processes
with the normal, standardised Student’s ¢, and skewed ¢ disturbances, keeping
the non-parametric nature of Historical Simulation in these disturbances. The
risk measures by NFHS, TFHS, and SKTFHS are estimated in section 2.3.
Patton et al.|(2019)) propose several semiparametric models in which the model

parameters are estimated by minimizing the F'Z0 scoring function. We use the
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one-factor GAS model (denoted by FZ1F), the GARCH model via FZ minimiza-
tion (denoted by GFZ) as well as the hybrid GAS/GARCH model (denoted by

Hybrid) they propose.

3.B.3 Parametric approaches

The EWMA model (the RiskMetrics model) is a simple variance model that
captures the persistence of a shock to the variance dynamics. The risk estimates

under EWMA at time ¢t are

0, = iy + 6:97 (), eEWMA — [+ % O (x)dx (3.B.2)
0

where fi; is the average return within the estimation window and the conditional
variance is estimated as: 62 = (1 — A\)r? | + A\62_,, with A = 0.94.

We also compute the VaR and ES measures for the GARCH(1,1) models:

Ty = 5-tZt7 Zt ~ F <3B3)

62 = QO+ prl 4402, where B+4 <1,

F' denotes a cumulative Normal, Student’s ¢ or Skewed ¢ distribution for the
residuals. The parameters &, § and 4 are estimated via Maximum Likelihood

Estimation in a moving window of L = 1,000. Subsequently, the VaR and ES
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estimates are written as:

(%

o e a), AT =2 [P (3.B.4)
0

For the extreme value approach, we fit the GPD distribution to the exceedances
beyond the threshold in the standardised residuals obtained by the GARCH(1,1)
process with various innovations. The risk forecasts are displayed in section 2.3.

Additionally, to allow for switching market states, the extended Markov Switch-
ing GARCH(1,1) model with normal disturbances (Klaassen, [2002)) is also em-
ployed:

Ty = hStZty Zt ~ Z/ld N(O, ]_), St = {17 2}, <3B5)

where fzst = W, + Bsﬂ"f_l + s, - Zle pijﬁiyt_l,djst,ﬁst and 45, > 0; s = 1 or 2,
showing the possible market state at time ¢; p;; denotes the probability of state j
at time ¢ conditional that the market is in state ¢ at time ¢t — 1 and iLi,t_l denotes
the conditional variance dynamics in state ¢ at time ¢ — 1. In this case, we write

the VaR and ES estimates as:

- Vs o
R R o -0
0
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Notes

!The primary focus of this chapter is on the standard regulatory VaR and ES measures, but

other variants like expectile-based value-at-risk (expected shortfall) (Newey and Powell, [1987;

Kuan et al., 2009) and mark to market value-at-risk (MMVaR) (Boudoukh et al., 2004; |Chen|

2019) have been discussed in the academic literature. Detering and Packham| (2016])

propose a model risk measure applicable to derivatives contracts trading that improves over the
price range measure introduced in (2006) as a yardstick of model contingent claim pricing
uncertainty. The latter is incompatible with regulatory capital charges while the former can be

used for reserve buffer computations and it is based on value-at-risk or expected shortfall.

2See Embrechts et al.| (2014) for a comprehensive discussion.

3See more properties of scoring functions in [Davis| (2016) and |Gneiting| (2011).

“In (3.A.2)), 1 denotes the indicator function; the first summand is the GPL family and only
depends on VaR; the second summand depends on VaR and ES. That is, ES is not elicitable
per se, but jointly elicitable with VaR. On most occasions, Ga(r) is disregarded (see Nolde and

Ziegel||2017a)).

®The simulation study undertaken by Nolde and Ziegel (2017a) shows that the values of the

constants are irrelevant.

6Here we used the Matlab codes ( http://public.econ.duke.edu/ ap172/) provided by

(2019), for which we are very grateful.

"The optimization to find a constrained minimum of a multivariate function shown in equa-

tion (3.3.2) is done in MATLAB by implementing the ‘fmincon’ function with the ‘sqp’ algorithm

which guarantees the existence of a solution, as discussed in Nocedal and Wright| (2006).

81n this chapter, we compute the optimized multipliers using a multiplier estimation window

length of 2,000 in order to reduce the effect of data noise (Nolde and Ziegel, [2017alb)). That is,

7 = 1,999 throughout this chapter.
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9We also compute the model risk over the course of a four-year backtesting period, around
1,000 trading days. The results are available upon request.

10The alternative measure replacing the formulation in with the RMSE type produces
similar results.

We consider VaR and ES as negative risk measures throughout this chapter.

12An excellent discussion on the “square root of time” rule used to compute multi-day risk

measures can be found in Diebold et al.| (1997)) and [Danielsson and Zhou| (2017]).



Chapter 4

Model Risk of Volatility Models

4.1 Introduction

Volatility forecasting often constitutes a significant impact in many applications,
for example, in derivatives pricing, statistical risk measure estimation and invest-
ment decision-making. If the volatility forecast is wrong, then the implications
can be widespread. The existing enormous volatility modeling literature cov-
ers the family of autoregressive conditional heteroscedasticity (ARCH) models,
stochastic volatility models as well as volatility models based on realized data, in
a univariate or multivariate setting (see an extensive overview of volatility mod-
els in Bauwens et al. 2012). This chapter contributes to the line of volatility
modeling literature in measuring and managing model risk numerically.

The primary issue in evaluating the accuracy of volatility models is that the

target variable (e.g., the true variance denoted by ¢?) is unobservable and latent

148
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(Hansen and Lunde, [2006| and [Patton, 2011)). This is addressed by using a condi-
tionally unbiased variance estimator of the true conditional variance (hereafter,
also called the volatility proxy and denoted by &%), namely the daily squared
return, the realized variance, or the range-based variance to name the main ones
(see |Alizadeh et al. 2002; Barndorff-Nielsen and Shephard, 2002, and |Andersen
et al., 2003).

One strand of the volatility forecasting literature focuses on the accuracy of
a single model. A simple and well-known approach to evaluate the accuracy of a
single volatility model is the Mincer and Zarnowitz (1969) (MZ) regression. This
method! regresses the conditionally unbiased proxy (67) for the true variance on
the variance forecast (h;) of a given model and estimates an intercept parameter
() (indicating systematic over/under-estimation) and a coefficient (), and it is
written as 62 = « + Bh; + e;. The null hypothesis of the forecast optimality is
that HY : o = 0 and 8 = 1. The R? of the regression equation is considered as a
criterion for the accuracy (efficiency) of the volatility forecasting model. Instead
of evaluating a single model, a second strand considers model comparisons based
on scoring functions. The pairwise comparisons between two competing forecasts
(see the tests of Diebold and Mariano, (1995 and |West|, 1996 as well as a general
discussion in (Giacomini and White, [2006) and the multiple comparisons among
volatility models (e.g., [Hansen and Lunde, 2005, and Hansen et al., 2011) have
been well-documented.

The drawback of the MZ regression and the pairwise comparison tests is that



4.1. Introduction 150

the noisy volatility proxy may distort the results, as argued by [Hansen and Lunde
(2006) and [Patton| (2011)). To solve this problem, Patton| (2011)) proposes a class
of robust and homogeneous scoring functions for the volatility, which leads to an
invariant inference in the ranking of competing models to the choice of volatility
proxy. Within the proposed family of scoring functions, the mean square error
(MSE) and QLIKE scoring functions are widely accepted for the evaluation of
volatility forecasting models as in [Forsberg and Ghysels (2007)), |Bauwens et al.
(2012)), [Engle and Siriwardane| (2018) and others.

Although an extensive study of volatility forecast comparisons has been con-
ducted around the average loss, or distance between the estimated variances of
competing models over a forecasting period (e.g., [Patton, |2011 and Hansen and
Lunde, 2005, much less is known about the exact magnitude of model risk of
the volatility forecast of a given model. Since the true volatility is never known
in practice, any volatility model is considered to be exposed to unobserved and
implicit model risk associated with the distance between the raw volatility esti-
mates to the true volatility. We approximate this type of model risk based on
the distance between the imperfect variance estimates and the improved variance
estimates based on the MSE or QLIKE loss function, thus facilitating model risk
management for volatility models.

We develop a model risk estimation methodology for volatility models, consid-
ering the choice of scoring function (MSE or QLIKE) and the effect of volatility

proxy. We estimate the model risk as the average distance between the raw
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and improved variance estimates over a model risk evaluation window (typically
250 trading days, similar to the backtesting period for statistical risk measures
as suggested by the Basel Committee on Banking Supervision), 2019), in which
an improvement is achieved by minimizing the expected score of a given robust
scoring function (MSE or QLIKE) using a volatility proxy for a given univariate
volatility model.

We study this methodology via Monte Carlo simulations by comparing dif-
ferent optimization strategies and different lengths of optimization windows and
model risk evaluation windows. Then the simulation results show that the QLIKE-
based model risk estimation method with additive adjustments made to the
volatility estimates, which we propose in this chapter, is a good approximation
of true model risk according to several measures of similarity, based on the set
of volatility models considered. We mainly use different specifications within the
broad GARCH class, and find that the proposed method at least has a correlation
of 0.88 with the true model risk measure across various models considered.

Considering the desirable coherence properties (Artzner et al.| [1999) of a man-
ageable (from a regulatory perspective) measure of risk for our proposed QLIKE-
based model risk estimation methodology, we find that all properties are satisfied
except for the subadditivity. Despite this, the proposed measure of model risk can
be effectively regulated as the monotonicity, positive homogeneity and translation
invariance properties hold.

In an empirical study we apply the proposed model risk measure associated
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with different volatility proxies (the squared return and the realized variance) to
different asset classes, showing that the level of estimated model risk based on the
QLIKE loss function is not sensitive to the choice of volatility proxy across various
models in general. The model risk of volatility models adapts to market events,
particularly increasing when the market becomes very volatile. The increase in
the values of R? of the MZ regressions after adjusting variance estimates for
model risk shows that model risk has a negative effect on the predictive accuracy
of volatility models. We also disentangle the model risk of volatility models into
parameter estimation risk and model misspecification risk, and conclude that
model misspecification risk generally plays a more dominant role than parameter
estimation risk.

The rest of Chapter [] proceeds as follows: Section introduces a model
risk estimation methodology based on the MSE and QLIKE loss functions, as
well as the definitions of model risk measures; Section justifies the QLIKE-
based model risk measure via simulations, and Section 4.4 examines the desirable
coherence properties of this measure; Section [4.5] applies the proposed QLIKE-

based model risk measure to different asset classes; Section [1.7] concludes.
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4.2 Quantifying model risk

4.2.1 Evaluating volatility models using scoring functions

The discriminatory analysis between competing models is conducted based on
scoring functions. A scoring function is defined as a function S : Ry x H — R,
and H is a compact subset of R, where R, and R, , represent the non-negative
and positive parts of the real line, respectively.

In terms of model comparisons, the evaluation of volatility forecasting mod-

2 and scoring function S. To

els depends on the choice of volatility proxy &
compare two time series of competing volatility forecasts, {h¥} and {h7}, of
model k£ and j over a period from t to t + 7, we compare the expected scores

t+7 t+7 .
E[S(6% 1) = 5 - 3 562, ) and E[S(6%, )] = - - 30 (67, bi), given a
1=t i=t

Y
volatility proxy 62 and scoring function S. A smaller expected score indicates the
superior forecasting ability of a volatility model. For a given scoring function and
volatility proxy, the optimal volatility forecast denoted by hy can be obtained by
minimizing the expected score and is defined as below, where F;_; denotes the

time ¢ — 1 information set (see Patton, [2011; this is further generalized for point

forecasts of interest in (Gneiting, 2011)):

h; = argminE [S(67, h)|Fi_1] - (4.2.1)
heH

We consider the MSE and QLIKE scoring (loss) functions (denoted by S,,se or
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Sqiike) in this chapter. The robustness property of scoring functions distinguishes
the MSE and QLIKE scoring functions from a number of widely used scoring
functions in volatility forecast applications in that the ordering of any two (possi-
bly imperfect) volatility forecasts by the expected score of MSE or QLIKE is the
same whether the ordering is done using the true conditional variance or some
conditionally unbiased variance (Patton,|2011). These two prominent robust scor-
ing functions are listed below, when a conditionally unbiased volatility proxy 62

is used:

2
MSE : Spnse (62, h) = (62 — h)%  QLIKE : Sy (62, h) = log(h) + % (4.2.2)

4.2.2 Measuring model risk of volatility models

In the following, we quantify the model risk of volatility model j for a time series
of observed daily volatility proxy 67, ...,67,, and a time series of out-of-sample
daily variance estimates hi s h{ . (computed in our case using rolling windows)
at time ¢, t +1,..., ¢t + 1T\

Definition 1. If the sequence of true variances {02} is known, and the volatil-
ity forecaster produces a time series of conditional variance forecasts {h?} by using

volatility model j, then the true model risk of volatility model j over a model risk
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evaluation window from ¢ to ¢ + n is quantified by p{t . +n]2:

t+n

j 1 .
pft,tJrn] T o+l Z |Uz'2 - hil . (4.2.3)

1=t

In practice, the true variance o2 is unobservable, which can be recovered by

2

the observed volatility proxy 6. Thus, the proxy ﬁft 0] of the true model risk

of model j is calculated as below:

1 t+n
~J _
Ploen) = 301 .

1=t

52— hll. (4.2.4)

7 K3

In order to approximate the true model risk of volatility models based on
scoring functions, we consider two estimation methods related to different op-
timization strategies via making the additive or multiplicative improvements to
variance forecasts, under (i) an additive structure or (ii) a multiplicative structure:

(i) Given a volatility model j, based on (4.2.5) we find an optimized constant?

*,5,7
a,t+71+k

t+7+k

C i=t+k

(added to a series of variance forecasts {h’ ) by minimizing the
expected score of some scoring function S over an optimization window from
t+ktot+7+kof length 7+ 1, where £ =0 : T — 7. Parameter ¢, is restricted

so that hf + ¢, > 0 is satisfied for all ¢ in order to ensure the positivity of variance

forecasts:
‘ t+r+k '
cZ’fjﬁHk = arg min . Z S (&f, hl + ca) ) (4.2.5)
7 e« THI1 i=t+k

As the optimization window of length 7+ 1 is rolled forward at every step, a time
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. .. . ,S,j . . .
series of optimized increments {c¢}7” }'*7" is generated for variance estimates of

model j. Subsequently, the estimated model risk of model j over a model risk
evaluation window from ¢ + 7 to ¢t + 7 + n is given by pf[jt brttrtn]’ under an

additive structure:

t+7+n
, 1 . . .
S, _ E : *,5,
Pl,[jwt+f,t+r+n] n+1 ‘(h{ +ca) = hil (4.2.6)

i=t+T1
(ii) In an approach different from the one based on an optimized incremental com-
. . . . . *7S7j . .
ponent in (4.2.5), we calculate an optimized multiplier Conttrsr that is assigned
to the conditional variance forecasts {hf ,fgj:,f via minimizing the expected score

over an optimization window from ¢ + k to t + 7 4+ k with window length 7 + 1,

where k = 0 : T — 7. Parameter ¢, is constrained to satisfy ¢ > 0:

t+7+k
* 1 . 1 ~ ;
Conothr = AL MIN =1 > S(67. 0 cm) . (4.2.7)
om i=t+k

Then the model risk of volatility model j is estimated by pg[jt bt under a
multiplicative structure:
1 t+74+n
S,j _ J . 45 J
p2,[t+7',t+7'+n] - n——l—l ) Z ‘(hz " Con ) - hi : (4~2~8)
i=t+T1

In the following, we will omit the subscripts for the time intervals of pft tam]’ ﬁft rin])

pls[]t rtbrn] and p‘; ﬁt bt for brevity. In order to detect the similarity of model
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risk estimation measures defined in , and to true model risk
measure defined in (4.2.3)), we first compute Pearson’s linear correlation coefficient
CM = Correl(pM,p™ or pM) between true model risk (p™) and model risk
measure estimates across the set of volatility models M discussed in Table[4.3.1} in
SM = ppM

which p or p§ M This can only show a linear relationship between the

two series, so we additionally consider the possibly nonlinear association between

true model risk and model risk measure estimates by using the 7" = 7, (pM, pM
or p>M) correlation coefficient from [Emond and Mason| (2002)) that extends the

nonparametric Kendall’s 7, measure. For a model j, the explanatory power of
model risk estimation measure over true model risk measure is defined as 1’/ =

p53 /7 or b7, where pS3 can be g7 or pg?.

4.3 Simulation study

In this section, we verify via simulations whether the model risk estimation
methodology is able to capture the size of true model risk of a given volatil-
ity model. Considering that the conditional distribution of financial time se-
ries is often fat-tailed and asymmetric, we use the GARCH(1,1) model with the

skewed Student’s ¢ distributed innovations (SKTGARCH), allowing for kurtosis
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and skewness, as the data generating process that is specified as:

re = \/lZ, Z ~ skewed Student’st (v,\), (4.3.1)

hy = @+dT§_1+Bht—1>

where r; denotes a realization of return and h; denotes the one-step ahead con-
ditional variance forecast at time ¢. The density function of the standardized
returns Z is f(z|v, \) (see Appendix [4.A]), in which v is the degree of freedom pa-
rameter and \ is the skewness parameter. The model parameters* are estimated
on the S&P500 Index daily returns from 2000/01/03 to 2010/12/31 (2869 obser-
vations): @ = 7.8183¢7 a4 = 0.0770,5 = 0.9205,7 = 7.1845 and A = —0.0848.
Using these values, we generate a time series of 10,000 daily returns.

Based on the simulated returns, we employ 19 volatility models® specified in
Table to make one-step ahead conditional variance estimates. More pre-
cisely, the models are: 1) historical volatility measures (RW250 and RW1000),
which are non-parametric; 2) the RiskMetrics model with A = 0.94; 3) the au-
toregressive conditional heteroscedasticity (ARCH(1)) models (Engle, [1982)) with
one lag, combined with four specifications® for the standardised errors following
the normal, Student’s ¢, skewed Student’s ¢ and generalized error distributions,
respectively; and 4) specifications of the generalized autoregressive conditional
heteroskedasticity models combined with the aforementioned four distributional

assumptions for the standardised errors, including the symmetric GARCH(1,1)
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models (Bollerslev, |1986)), as well as the models of EGARCH(1,1) (Nelson, [1991)
and GJR-GARCH(1,1) (Glosten et al., [1993) with leverage terms to consider

asymmetry in volatility clustering.

Table 4.3.1: Volatility models for one-step ahead conditional variance fore-
casts

2
RW250: he = 249 >t =t-250 (ri - 250 i 250 ri) )

RW1000: h = 555 > i t-1000 (i — 7000 e 1000 ri)

RiskMetrics: hy = (1 — AN)r?_, + Ahy_1, where A = 0.94

ARCH(1): hi =w+ar? |

GACRH(l,l) ht =w+ Oé'l“t2_1 + Bh‘t 1

EGARCH(1,1): log(hy) = w+a [ =l — B{L=ly | 4 (2=l 4 Blog(hy1)

GJR-GARCH(1,1): h=w+arf ; +&1{r, 1 < 0}7“,5_1 + Bhi—q

This table shows that for all (G)ARCH specifications ¢ = \/hiZ;, where Zy denotes
the standardized return and follows the mormal, Student’s t, skewed Student’s t and
generalized error distributions.

We first compute the daily variance estimates using rolling windows with
length 1,000 (except for the RW250 method, for which we use the previous 250
observations to compute the historical variance in a rolling window scheme). Then
for each model, we calculate the model risk of the daily volatility forecasts using
the squared return as the volatility proxy for a given scoring function (S,,s or
Sqlike), considering several optimization windows of length 7 = 250, 7 = 500,
73 = 1,000 and 74 = 2,000 with respect to the expected score and two model risk
evaluation windows of length n; = 250 and ny = 1, 000.

Panel (a) of Figure[4.3.1] presents the dynamic correlation” between true model

risk in (4.2.3) and estimated model risk in (4.2.6]) based on the MSE and QLIKE
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loss functions under an additive structure across all the models considered in
this chapter, based on data simulated by the SKTGARCH model, whilst panel
(b) shows that the model risk estimation method that assumes a multiplicative
structure in leads to lower correlations between the true and estimated
model risk. Thus, in the remaining part of this chapter, we only estimate model
risk using the additive structure and present the corresponding results. Also, we
find that the longer the model risk evaluation window, the higher the correlation
between the true and estimated model risk. Moreover, Figure |4.3.2]illustrates the
average percentage of true model risk explained by the QLIKE-based model risk
measure estimates under an additive structure, calculated using an optimization
window of length 7, = 500 and model risk estimation windows of length n; = 250
and ny = 1,000. Across all the models considered, the model risk estimation
measure computed over a shorter model risk evaluation window (n; = 250) can
capture a larger part of true model risk than the measure computed over a longer
window (ne = 1,000). Besides, this QLIKE-based model risk estimation method
explains up to about 80% of true model risk.

In order to measure the similarity of model risk measure estimates to true
model risk, Table [4.3.2] reports average values of the correlation, 7, correlation
coefficient and explanatory power (denoted by CM, 7™ and ¢ respectively).
In panel A, we report the results of model risk measures based on the MSE and
QLIKE loss functions, considering the squared return as the volatility proxy. We

find that the model risk estimation method based on the QLIKE loss function
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Figure 4.3.1: Dynamic correlation between true model risk and estimated

model risk
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Panel (a) and panel (b) of this figure show the dynamic correlation between true model
risk in and estimated model risk under the additive structure in and under
the multiplicative structure in across various volatility models accordingly, based
on data simulated by the SKTGARCH model. Model risk of daily volatility forecasts is
estimated using scoring function Syse 0T Syiike, and the squared returns are used as the
volatility proxy. We consider optimization windows 7, = 250, 7o = 500, 73 = 1,000 and
74 = 2,000 and model risk evaluation windows ni = 250 and no = 1, 000.
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Figure 4.3.2: Average percentage of true model risk explained
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This figure shows the average percentage of true model risk explained by the QLIKE-
based model risk defined in (4.2.6), using an optimization window of length 1o = 500.

outperforms the one based on the MSE loss function, as the former generally
has a higher correlation (and 7, coefficient) with the true model risk measure for
a given optimization window and model risk evaluation window. The QLIKE-
based technique is highly consistent with the true model risk measure with a
correlation averaging from 0.88 to 0.98. In terms of the length of optimization
windows, the QLIKE-based model risk estimation methodology using a window
length of 73 = 1,000 generally leads to the highest correlation with the true model
risk measure for a given model risk window, which is followed by estimation using
a window length of 75 = 500 as shown in panel A. Nevertheless, the latter method
is able to explain a higher proportion of true model risk.

In panel B of Table[d.3.2], we look at the similarity of the true model risk proxy
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Table 4.3.2: Similarity of model risk measures to true model risk measure

Panel A: Similarity of the MSE or QLIKE-based model risk measure

Model risk measure optimization model risk win- cM M M
window length dow length
71 = 250 ny = 250 0.91 0.68 115%
ny = 1,000 0.96 0.67 88%
79 = 500 ny = 250 0.87 0.73 92%
ny = 1,000 0.94 0.88 60%
Smse
P1
3 = 1,000 ny = 250 0.82 0.79 66%
ng = 1,000 0.91 087 44%
74 = 2,000 ny = 250 0.73 0.88 41%
ny = 1,000 0.86 0.94 29%
71 = 250 ny = 250 0.89 0.65 96%
ny = 1,000 0.98 0.61 85%
79 = 500 ny = 250 0.88 0.81 65%
ny = 1,000 0.97 0.95 50%
Sqlike
1
3 = 1,000 ny = 250 0.92 0.88 43%
ny = 1,000 0.96 0.99 34%
74 = 2,000 ny = 250 0.89 0.92 32%
ny = 1,000 0.94 1.00 26%
Panel B: Similarity of the true model risk proxy measure
. ny = 250 0.35 1.00 832%
b ny = 1,000 0.44 1.00 763%

This table presents several ways to measure the degree of similarity of model risk mea-
sures (p7m, pfq”ke, p) to true model risk measure, based on daily returns simulated by
the SKTGARCH model: CM and 7‘;\/[ represent average values of linear and nonlinear
association between true and estimated model risk; Y™ shows the average explanatory
power of model risk measures across the set of volatility models. We consider optimiza-
tion windows 11 = 250, 7o = 500, 73 = 1,000 and 74 = 2,000 and model risk evaluation

windows ni; = 250 and ny = 1,000. The volatility proxy is the squared return.
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measure estimates to true model risk, and find the average correlations around
0.35 and 0.44 which are less than half of the corresponding values presented in
panel A. Additionally, the true model risk proxy measure tends to over-estimate
model risk that would be more than seven times of true model risk. From a
dynamic perspective, Figure [4.3.3| compares the dynamic correlation of the true
model risk proxy measure and the QLIKE-based model risk measure with the true
model risk measure, where the squared return is used as the volatility proxy and
model risk is computed over a model risk evaluation window n; = 250. Unlike the
QLIKE-based model risk measure, the true model risk proxy measure is unable to
give a reasonable approximation of true model risk in that its negative correlation
with true model risk measure occurs frequently.

Generally, we can conclude based on the simulation analysis that the scoring
function-based model risk estimation methodology using the additive structure
defined in can be a practical tool to provide a rational approximation of
true model risk of volatility models, particularly when the QLIKE scoring function

is used for optimization over windows 7 = 500 and 75 = 1, 000.

4.4 Properties of model risk estimates

To facilitate model risk management from the regulators’ perspective, a reason-
able positive measure p(+) of risk should satisfy the coherence properties (McNeil

et al., 2015): 1) Monotonicity: for returns r; and ry with 71 < ry, we have that
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p(r1) > p(r2); 2) Positive homogeneity: for any positive number k € R, we have
that p(k-r) = k- p(r) where r denotes the returns; 3) Translation invariance: for
any a € R, we have that p(r + a) = p(r) — a; and 4) Subadditivity: for any r,
and ry, we have that p(r; + rq) < p(r1) + p(ra).

In a similar vein, we focus on the properties of the QLIKE-based model risk

measure denoted by pdited (r, h7) using the squared returns r2

as the volatility
proxy in which r denotes the daily returns of a certain asset and A’/ denotes one-

step ahead variance forecasts of a model j. Consider the following properties that

a reasonable measure of the model risk of volatility models should satisfy:

i) Monotonicity: If o® < h® < b/ or o? > h' > I/ for all ¢, then pSaikei(r hl) <
pSatiked (v, h7), assuming that two different volatility models 7 and j produce vari-
ance estimates h' and h’/ respectively, when applied to the returns r of a certain
asset.

This property states that if the variance estimates of a certain model are closer

to the true variances o2, then this model will carry a lower level of model risk.

ii) Positive homogeneity: For k € R* and a model j, pSaired(k - r k% - W) =
k% . pSaked(r, h7), given the returns r of a certain asset and the corresponding
variance estimates h? of volatility model j.

This states that if the return data is rescaled by a positive constant k£ and the
variance estimates are rescaled by k%, then the model risk will be resized by k2

as well.
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iii) Translation invariance: For a model j, if a constant a with 0 > a > max(c? —

h7) and 02 < hi, or with 0 < a < min(c?—h7) and o > b7 for all t, pSaire:d (r, hi +
a) = paiked (1, hi) + |al.

This property says that when the variance estimates are shifted by a constant
a that satisfies the condition 0 > a > max(c? — h/) with 02 < W/, or 0 < a <
min(o? — h7) with ¢? > K/, then the model risk of model j will increase by the

absolute value of a.

iv) Subadditivity: psqlik&j(r(x+y),h{x+y)) < pSained (rx W) + patiked (ry hi),
considering that a model j produces the variance estimates h’, h] and hz X4v)
when applied to individual assets X and Y, and an equally weighted portfolio
(X 4+Y) consisting of these two assets.

This states that for a given volatility model, the model risk for an equally weighted
portfolio comprised of assets X and Y is lower than the sum of model risk for
the constituents. This property should not be required for measures of model

risk of volatility models, as it does not follow the expected behavior of model risk

measures.

Via Monte Carlo simulations, we find that the properties of monotonicity, positive
homogeneity and translation invariance hold for the QLIKE-based model risk
estimation method using the squared return as the volatility proxy, whilst the
subadditivity property does not. In Figure 4.4.1] we revisit the subadditivity

property of our proposed model risk measure in simulated cases as in [Danielsson
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et al.| (2013), and report the subadditivity violation rates.

Specifically, assuming that assets X and Z are independent but follow the
same Student’s t distribution with the degree of freedom v = 2,4, 10, and 50, we
construct asset Y defined as Y = ¢X + /1 — ¢2Z, thereby being correlated with
asset X with a correlation coefficient ¢. We consider two cases: in the first one
X and Y are independent (¢; = 0); in the second case X and Y are correlated
(¢ = 0.5). We simulate 500 paths of 1750 returns for X and Y, and build
an equally weighted portfolio (X + Y'). Subsequently, we make one-step ahead
variance estimates by using the RW1000 model and compute the QLIKE-based
model risk over an optimization window 75 = 500 and a model risk evaluation
window n; = 250 for the individual assets and the portfolio. If the model risk
of the portfolio is larger than the sum of individual model risk of the component
assets, the subadditivity property will be violated for this simulated path. As the

results show, the subadditivity violations are very high.

4.5 Empirical application

In this section, we apply the QLIKE-based model risk measure under the additive
structure in (4.2.6) using an optimization window of length 7, = 500 and 73 =
1,000 for empirical illustrations, as this measure shows high correlations with
the true model risk measure as evidenced by Figure and Table in the

simulation study. A shorter model risk evaluation period n; = 250 is used, since
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it is in line with the backtesting period of market risk models, and based on this
shorter evaluation period, the proposed model risk estimation method captures a
higher proportion of true model risk than the method based on a longer evaluation
period ny = 1,000.

We illustrate the QLIKE-based model risk estimation method for several as-
set classes with daily data (30/12/1983 - 21/10/2019), downloaded from DataS-
tream: 1) FTSE100 Index close prices (FTSE100); 2) JP Morgan Chase close
prices (JPM); 3) Europe Brent spot prices (dollars per barrel) for Crude Oil
(Crude Oil); and 4) Foreign exchange USD/GBP rates (USD/GBP). To consider
an alternative volatility proxy for the conditionally unbiased variance estimator,
we also download the daily close prices and the 5-min realized variances of the
FTSE100 Index (04/01/2000 to 10/10/2019) from the realized library of Oxford-
Man Institute of Quantitative Finance®. We compute daily log-returns of differ-
ent assets and then produce out-of-sample one-step ahead variance forecasts in a
rolling window scheme (all the models detailed in Table use rolling windows
of length 1,000 to build volatility forecasts, except for RW250 using windows of
length 250).

Table reports average ratios’ of the QLIKE-based model risk estimates
based on two proxies, namely the squared returns and 5-min realized variances,
to estimated variances. Model risk estimates are calculated over two optimization
windows 75 = 500 and 73 = 1000 and a model risk window n; = 250, using daily

returns and 5-min realized variances of the FTSE100 Index from 04/01/2000 to
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Table 4.5.1: Average ratios of the QLIKE-based model risk estimates, using
different volatility proxies, to estimated variances

The volatility proxy 62 is

squared returns 5-min realized variances

Models 7o =500 73 = 1000 7o =500 73 = 1000
RiskMetrics 51.6% 33.4% 47.1% 33.5%
RW1000 57.5% 36.9% 53.0% 36.9%
RW250 16.6% 12.4% 14.4% 8.3%
NARCH 36.9% 25.9% 36.2% 26.7%
TARCH 36.9% 27.8% 35.9% 27.5%
SKTARCH 36.9% 28.0% 36.0% 27.5%
GEDARCH 37.5% 27.3% 36.8% 27.4%
NGARCH 7.4% 4.8% 8.7% 8.1%
TGARCH 7.3% 5.1% 8.8% 8.3%
SKTGARCH 7.1% 5.0% 8.5% 8.0%
GEDGARCH 7.4% 5.2% 8.7% 8.1%
NEGARCH 8.0% 4.7% 8.3% 4.0%
TEGARCH 8.7% 4.9% 8.4% 4.2%
SKTEGARCH 9.0% 5.2% 8.6% 4.4%
GEDEGARCH 8.2% 4.6% 8.3% 4.0%
NGJR 8.0% 6.5% 9.0% 6.6%
TGJR 7.6% 6.3% 8.5% 6.2%
SKTGJR 7.6% 6.2% 8.5% 6.1%
GEDGJR 7.8% 6.4% 8.8% 6.4%

This table presents average ratios of the QLIKE-based model risk estimates, using dif-
ferent volatility proxies, to estimated variances. The daily prices and the 5-min realized
variances of the FTSE100 Index range from 04,/01/2000 to 10/10/2019. The volatility
proxies used are squared returns and 5-min realized variances. The optimization window
length is 79 = 500 and 13 = 1000, the model risk evaluation window length is ny = 250.
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10/10/2019. We find that for the badly fitting models, the proposed technique,
using squared returns as the volatility proxy, generally estimates a higher level of
model risk than the one using realized data as the proxy. Here, the badly fitting
models are defined as those affected by model risk amounting to more than 25%
of estimated variances, and these include the RiskMetrics method, RW1000 as
well as the ARCH models. Generally, the average ratio of estimated model risk
to estimated variances is not sensitive to the use of the volatility proxy due to
the similar values of the level of model risk estimated over the same optimization
window.

Regardless of the volatility proxy used for the computation of the QLIKE-
based model risk estimates, it is interesting to notice in Table that the model
risk estimation method based on an optimization window of 75 = 500 always gives
higher ratios of model risk estimates than the method based on an optimization
window of 73 = 1,000 for the set of models. To get a better understanding of this
phenomenon, in Figure [4.5.1) we compare the additive adjustments with respect
to the optimization windows 75 = 500 and 73 = 1,000, and show the time series of
adjustments, obtained based on the QLIKE loss function and the squared return
used as the volatility proxy, made to volatility estimates of several selected models,
using the FTSE100 Index returns from 04/01/2000 to 10/10/2019. Clearly, the
QLIKE-based model risk measure computed over 75 = 500 in panel (a) responds
to market events in a more timely and effective manner. It allows a higher level

of additive adjustments, which also supports its higher explanatory power in
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Figure 4.5.1: Dynamic additive adjustments made to volatility estimates of
selected models
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The figure displays dynamic additive adjustments made to volatility estimates of selected
models, based on the QLIKE loss function, for the FTSE100 Index from 04/01/2000
to 10/10/2019. The optimization windows T2 = 500 and 13 = 1,000 are considered and
the volatility proxy is the squared return.
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the simulation study, as compared with the measure computed over 73 = 1,000
days presented in panel (b) of Figure Therefore, in terms of the QLIKE-
based model risk measures, an optimization window of 75 = 500 is recommended
to warrant effective adjustments for model risk and high consistency with true

model risk at the same time.

Figure 4.5.2: Time-varying ratios of the QLIKE-based model risk estimates
to estimated variances
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This figure shows time-varying ratios of the QLIKFE-based model risk estimates to es-
timated variances. The squared return is used as the wvolatility proxy. Model risk is
computed over ny = 250 trading days using an optimization window of length 7o = 500,
based on the FTSE100 Index from 04/01/2000 to 10/10/2019.
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Figure shows the time-varying ratios of the QLIKE-based model risk
estimates of various models to variance estimates where the volatility proxy used
is the squared return (this can be compared with Figure of Appendix
in which the alternative proxy is the 5-min realized variance). Model risk is
estimated over n; = 250 trading days with an optimization window 7 = 500 for
FTSE100. Within the sample period, the RiskMetrics method, RW1000 and the
ARCH models are characterised by higher ratios of model risk over the variance
forecasts, compared with the rest of the models considered. Noticeably, when the
market is highly volatile, the model risk of volatility models increases in general.
For example, the FTSE100 Index experiences its most uncertain period around
2009, following which the ratios of estimated model risk to estimated variances
of various models reach the peak level around 2010 due to the evaluation period
for model risk having a length of n; = 250 (about one year).

It is common practice to use the adjusted R? of the Mincer-Zarnowitz (MZ)
regression to assess the degree of predictability of the volatility models. We use
the 5-min realized variance as endogenous variable and the estimated variance, or
rather the improved variance estimate for model risk as explanatory variable in
the MZ regression. In order to analyze the performance of the forecasted volatility
adjusted for model risk, in Figure we compute the change in the adjusted
R? of the MZ regressions (displayed in bars), which shows a very similar pattern
to the average ratio (displayed in lines) of model risk estimate over estimated

variance. The model risk estimates are computed over an optimization window
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Figure 4.5.3: Change in the adjusted R-squared of the MZ regressions when
adjusting for model risk

(a) Using the squared return as the volatility proxy
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(b) Using the 5-min realized variance as the volatility proxy
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This figure shows the change in the adjusted R? of the MZ regressions in which the
5-min realized variance and the variance forecast are dependent and independent vari-
ables, accordingly, based on the FTSE Index data from 04/01/2000 to 10/10/2019,
after adjusting variance estimates for the QLIKE-based model risk of different volatility
models. An optimization window 7o = 500 and a model risk window n; = 250 are
considered.
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7o = 500 and model risk evaluation window n; = 250, based on the QLIKE
loss function related to the squared return and the realized variance as volatility
proxies, for the FTSE100 Index returns from 04/01/2000 to 10/10/2019. After
taking model risk into account, the volatility models have more predictive ability
as evidenced by an increase in the adjusted R? across the set of models considered.
In general, the higher the model risk, the higher the increase in the adjusted R?
of the MZ regressions when adjusting for model risk of various models.

A second application based on several asset classes from 30/12/1983 to 21,/10/2019
is illustrated in Table |4.5.2| which presents average ratios of the QLIKE-based
model risk to variance forecasts for the set of models given in Table Here
we use squared returns as the volatility proxy and compute the model risk based
on optimization windows of length 7 = 500 and 73 = 1,000, and a model risk
evaluation window of length n; = 250. For all assets considered, the RW1000
method carries the highest level of model risk among the set of volatility models,
followed by the RiskMetrics method as well as the ARCH(1) models. Inter-
estingly, volatility models have the highest model risk when applied to the JP
Morgan Chase stock as compared with the other assets in general.

In Figure we plot the time-varying ratios of the QLIKE-based model risk
over variance estimates of two models (SKTGARCH(1,1) in panel a and Risk-
Metrics in panel b, respectively) applied to various assets, based on data from
30/12/1983 to 21/10/2019. We estimate model risk based on a model risk win-

dow n; = 250 and an optimization window 75 = 500, using the squared return
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Figure 4.5.4: Time-varying ratios of the QLIKE-based model risk to esti-
mated variances, given a specific model applied to various assets
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This figure shows time-varying ratios of the QLIKE-based model risk to estimated vari-
ances, given a specific model applied to various assets. The volatility prozy is squared
return and model risk is computed over ny = 250 trading days using an optimization
window of length 19 = 500, based on data from 30/12/1983 to 21/10/2019.
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as the volatility proxy. Considering the contrasting models, SKTGARCH(1,1)
and RiskMetrics, we notice that the ratios of estimated model risk over the vari-
ance forecasts fluctuate dramatically between 1% and 115% for different assets.
Particularly for the equity JP Morgan Chase, the peak value (about 115%) of
the ratios of model risk estimates of the RiskMetrics model is around four times
higher than for the SKTGARCH(1,1) model (about 30%). As such, the investors
need to be conscious of the level of model risk of volatility models for different
assets that increases in uncertain times.

The components of model risk estimates are of much interest for the regula-
tory authority, practitioners and academics. The major sources of model risk are
parameter estimation risk and model misspecification risk (Kerkhof et al., [2010)).
Figure[4.5.5]disentangles the QLIKE-based model risk estimates of volatility mod-
els into these two types of risk: panel (a) decomposes the model risk across vari-
ous models; whilst panel (b) shows the time-varying values of the components of
model risk for the GEDARCH model. The calculation of model risk is done over
an optimization window 7 = 500 and a model risk evaluation window n; = 250.
The squared return is used as the volatility proxy. For a given volatility model,
we compute estimation risk via simulations of this model with model parameters
estimated on the FTSE100 Index from 30/12/1983 to 21/10/2019. Model mis-
specification risk generally contributes more to the total model risk than parame-
ter estimation risk across various models and over time, as illustrated in panel (a)

and panel (b) respectively, though a few exceptions appear when GARCH(1,1)
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Figure 4.5.5: Decomposition of the QLIKE-based model risk of volatility
models

(a) Average model risk across various models
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(b) Time-varying model risk of GEDARCH
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This figure shows components of the QLIKE-based model risk estimates for various
models in panel (a) and for the GEDARCH model in panel (b), based on FTSE100
from 30/12/1983 to 21/10/2019. An optimization window 7o = 500 and a model risk
evaluation window ny = 250 are considered, and the wvolatility proxy is the squared

return.
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models are considered. When the market becomes volatile, model misspecifica-
tion risk is aggravated. After the 2008 global financial crisis, we find that the
estimate of model misspecification risk peaks, as can be seen in panel (b).

In an additional exercise, we investigate the relation between the constituents
of model risk estimates and model dependent variance forecasts. Based on the
daily prices and the 5-min realized variances of the FTSE100 Index from 04/01/2000
to 10/10/2019, the model risk of the set of volatility models is computed based
on the QLIKE loss function over an optimization window 7, = 500 and a model
risk evaluation window n; = 250, using the squared return as the volatility proxy,
and then it is decomposed into model misspecification risk and parameter esti-
mation risk. Table reports the coefficients, the associated ¢ statistics with
White (1980) standard errors robust to heteroscedasticity adjusted for clusters as
well as the adjusted R? of the panel regressions based on a fixed-effects (within)
estimation. More specifically, we regress model misspecification (estimation) risk
estimates on the explanatory variables which are related to: RET is the average
daily return; RV'5 is the average 5-min realized variance and Var is the average
variance estimate over the past 250 days. The results show an increase by 0.177
(0.196) in the values of adjusted R? after containing information on the models
when model misspecification (estimation) risk is as endogenous variable. To this
end, our proposed methodology can spot the inefficiency of volatility models in
making volatility forecasts regarding major sources of model risk, which reinforces

the reliability of this proposed technique.
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4.6 Alternative measure of model risk

We consider an alternative definition of model risk measure, i.e. the RMSE
formulation based on squared differences instead of the MAE formulation based
on absolute differences in Section [£.2] For example, we can compute true model

risk as below, rather than using the expression in (4.2.3)):

) L
pft,t+n} - n-+1 ’ Z (0—12 - hi) . (461)

In a similar manner, we can derive RMSE formulations for the true model risk
proxy and the model risk estimates based on the MSE and QLIKE loss functions
to replace , and .

Table reports the degree of similarity of the QLIKE-based model risk
estimate to the true model risk, in which model risk is computed in RMSE for-
mulations, based on simulated daily returns by the SKTGARCH(1,1) model. We
consider different lengths of optimization windows and model risk windows and
use the squared return as the variance proxy. Comparing with Panel A of Ta-
ble [£.3.2] we find that the RMSE formulated model risk estimates in Table [£.6.]]
derive similar values of correlations but tend to overestimate the magnitude of
model risk, compared with the MAE formulated model risk estimates. Thus, our
proposed model risk measure based on the MAE formulation are preferable over

the alternative measure based on the RMSE formulation.
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Table 4.6.1: Similarity of the QLIKE-based model risk estimate to the true
model risk, using RMSE alternatives

Model risk estimate optimization model risk win- cM M M
window length dow length
71 = 250 ny = 250 0.90 0.66 1.26
ny = 1,000 0.97 0.61 1.15
Ty = 500 ny = 250 0.88 0.83 0.71
ny = 1,000 0.95 0.92 0.56
Sqlike
P1
73 = 1,000 ny = 250 0.92 0.92 0.51
ny = 1,000 0.94 1.00 0.42
7, = 2,000 ny = 250 0.89 0.96 0.44
ny = 1,000 0.93 1.00 0.36

This table shows similarity between the true model risk and QLIKE-based model risk
estimates for the set of volatility models, computed using RMSE formulations based on
data simulated by the SKTGARCH model. The squared return is used as the variance
proxy. We consider optimization windows of length 1 = 250, 79 = 500, 73 = 1000 and
74 = 2000 and model risk windows of length n1 = 250 and ne = 1000.

4.7 Conclusions

To assess the accuracy of volatility models which are of much importance in the
financial world, we propose a new model risk estimation methodology based on
scoring functions to measure the model risk of volatility models. We investigate
this methodology considering the choice of volatility proxy (the squared return
or the 5-min realized variance) and loss function (MSE or QLIKE) for a set of
univariate models. It would be interesting to consider the model risk of volatility
models in a multivariate setting in future research.

In a simulation analysis, we consider different optimization strategies to im-
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prove on variance estimates, compare different lengths of optimization windows
and model risk evaluation windows, and then recommend the QLIKE-based model
risk estimation methodology with additive adjustments made to the volatility es-
timates, as we find that the proposed method leads to high correlations, averaging
from 0.88 to 0.98, between the estimated and true model risk measures. Partic-
ularly the technique based on an optimization window of length 7, = 500 and a
model risk evaluation window of length n; = 250 is highly consistent with the
true model risk measure, and can explain 65% of the true model risk on average
across the models. We examine the desirable properties of a reasonable measure
of model risk for our proposed technique, and find that the required properties
are satisfied.

In an empirical study, we explore the effect of different volatility proxies on
the proposed QLIKE-based model risk measure, concluding that the model risk
measure using the squared return as volatility proxy generally produces a higher
level of model risk for the badly fitting models (the RiskMetrics method, RW100
and the ARCH models), compared with the model risk measure that uses the
realized variance. The level of estimated model risk based on the QLIKE loss
function is not sensitive to the use of the volatility proxy across various models
in general. After adjusting variance estimates for model risk, the degree of pre-
dictability of volatility models has been improved as evidenced by an increase in
the values of adjusted R? of the MZ regressions.

In addition, applying our proposed methodology to several asset classes, we
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find that the RiskMetrics method, the historical volatility measure RW1000 and
the ARCH models are most affected by model risk, and that the volatility models
applied to various assets carry a higher level of model risk during stressed market
states than in normal market states, as expected. We also show that model
misspecification risk generally contributes more to model risk than parameter

estimation risk.



Appendices

4.A Density functions for error distributions

Normal density function

The probability density function of the normal distribution is:

exp~(=he)/202

1
f(zlpz,0.) = o2

where p, and o, denote the mean and standard deviation of z.

Student’s t density function

The Student’s ¢ density function is written as:

_ D) 1 1
T =Ty s o

where v denotes the degrees of freedom and I'(-) denotes the Gamma function.

188
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Skewed Student’s t density function

Following Hansen| (1994), the skewed Student’s ¢ density function is given as:

be <1 + ﬁ (bfjf)2> S , if 2z < —a/b,
flzlv,A) =
)2> —(r41)/2

bc(l—l—%_z(bli—*f , if 2> —a/b,

where the degree of freedom parameter v with 2 < v < oo controls the kurtosis

and the skewness parameter A\ is —1 < A < 1. The constants a, b and c are given

by:

Generalized error distribution (GED) density function

The probability density function of the generalized error distribution of the stan-
dardized residuals z beyond the threshold u is shown as below, where & and [ are

the shape and scale parameters with 5 > 0, respectively:

1—(1+&2/B)7YVE if € >0,
f(zl€,8) = for all z > u.

1—exp(—2/8),  i£E=0,
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4.B Additional results

Figure reports the time-varying ratios of the QLIKE-based model risk esti-
mates of various models to variance estimates where the volatility proxy used is
the 5-min realized variance, which can be compared with Figure [4.5.2]

Table reports the panel regression coefficients of misspecification (esti-

mation) risk on the variables as shown in the first column, which can be compared

with Table [4.5.3
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Figure 4.B.1: Time-varying ratios of the QLIKE-based model risk estimates
to estimated variances
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This figure shows time-varying ratios of the QLIKE-based model risk estimates to es-
timated variances. The 5-min realized variance is used as the volatility prozy. Model
risk is computed over ny = 250 trading days using the optimization window length of
T2 = 500, based on the FTSE100 Index from 04/01/2000 to 10/10/2019.
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Notes

'Other transformations of the latent variables in similar regressions are discussed by

(1995), Bollerslev and Wright| (2001)), and Hansen and Lunde] (2006}).

2This definition is based on absolute differences. We also use an alternative formulation based
on squared differences with similar (albeit weaker) results which are available in Appendix

3We use the default “interior-point” method in MATLAB for a constrained minimization
problem.

4The model parameters are constrained to satisfy that cD,éz,B > 0,4 +B <1,2< 7 <

and —1 < \ < 1.

®See a comprehensive review of volatility models in Hansen and Lunde| (2005).

5Density functions for standardised error distributions considered here are shown in Ap-

pendix [L.A]

"We also examine the model risk measures related to the formulation of RMSE as alternatives

to (4.2.3), (4.2.4)), (4.2.6)) and (4.2.8), and then produce the similar dynamic correlation between

true and estimated model risk as seen in Figure ?? of Appendix [£.B]
8Thanks to the data available from https://realized.oxford-man.ox.ac.uk/.
9The purpose of computing the ratio of model risk to the variance forecast of a given model

is to make an easy comparison across various volatility models and assets.



Chapter 5

Conclusions and Further

Research

5.1 Summary of the Findings and Contributions

of the Thesis

This thesis makes significant contributions to the quantification of model risk of
the widely used risk models and volatility models using several methods. It thus
provides guidance on model risk management for the regulatory authorities, risk
managers and financial decision-making for practitioners.

In Chapter 2, we quantify the model risk of ES as an optimal correction needed
for ES to pass several ES backtests jointly, regarding the desirable backtesting

criteria: 1) an appropriate frequency of exceptions; 2) the absence of autocor-

194



5.1. Summary of the Findings and Contributions of the Thesis 195

relations in exceptions; and 3) a suitable magnitude of exceptions. Considering
whether the backtesting-based correction method for ES satisfies the coherence
properties of a measure of risk from a regulatory point of view, in a simulation
study we find that all the properties hold for our chosen measure of ES model
risk with respect to the UCggs and CCpgg tests, except that the subadditivity
property is not guaranteed. We compare the 2.5% ES with the 1% VaR in terms
of model risk across different models and based on different assets. We find that
the 2.5% ES is less affected by model risk than the 1% VaR, needing a smaller
correction to pass the three ES backtests jointly. Besides, commodity ES carries
the highest model risk especially around 2008, compared to equity and bond ES.
Moreover, we consider the impact of VaR model risk on ES model risk in terms of
the ES calculations and the ES backtests. If VaR model risk is first accounted for,
then ES model risk reduces by approximately 50%. The results are strengthened
when the standard deviations of the corrections for model risk are considered:
the GARCH(1,1) models not only require the smallest corrections for model risk,
but the level of the corrections are the most stable, when compared to the other
models considered in this study.

In Chapter [3|, we develop a general scoring function-based model risk estima-
tion methodology to quantify joint (VaR, ES) model risk and ES model risk, and
disentangle the components of model risk of financial market risk models, based
on strictly consistent F'Z scoring functions applied to the risk functionals (VaR,

ES). We show that, when model risk is present, the ordering of (VaR, ES) models
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is sensitive to the F'Z specification function, although in the simulated cases the
model ranking is not sensitive to the choice of homogeneous F'Z scoring func-
tion when the pair of (VaR, ES) is estimated at small critical levels (e.g., 2.5%).
The proposed model risk estimation methodology is confirmed with a simulation
study in which we use three specific F'Z scoring functions which are 0, 0.5 and -1
positively homogenous. We find a high similarity between the true and estimated
model risk of (VaR, ES) risk measures as well as for the ES model risk, across
various risk models, with correlations varying from 0.8 to 0.987, with an explana-
tory power above 50%. In a simulation analysis, the newly proposed measures
of joint model risk and ES model risk satisfy numerically all coherence proper-
ties of a measure of risk, except for the subadditivity property. The empirical
results point out that, among all models considered the RiskMetrics model and
Historical Simulation have a very high level of joint model risk and ES model risk,
particularly during extreme events. In addition, the backtesting performance of
these models is improved upon adjusting for model risk.

In Chapter [4] we introduce a model risk methodology for volatility estimates
based on scoring functions. We study this methodology via simulations by com-
paring different optimization strategies and different lengths of optimization win-
dows and model risk evaluation windows, and then recommend the QLIKE-based
model risk estimation method with additive adjustments made to the volatility es-
timates, as we find that the proposed method leads to high correlations, averaging

from 0.88 to 0.98, between the estimated and true model risk measures. Partic-
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ularly the technique based on an optimization window of length 7, = 500 and a
model risk evaluation window of length n; = 250 is highly consistent with the
true model risk measure, and can explain 65% of the true model risk on average
across the models. We examine the desirable properties of a reasonable measure
of model risk for our proposed technique, and find that the required properties are
satisfied. In an empirical study, we explore the effect of different volatility prox-
ies (squared returns and 5-min realized variances, respectively) on the proposed
QLIKE-based model risk measures, concluding that the level of estimated model
risk based on the QLIKE loss function is not sensitive to the choice of volatility
proxy across various models in general. After adjusting the variance estimates for
model risk, the efficiency of volatility models can be improved as evidenced by an
increase in the values of adjusted R? of the MZ regressions. Additionally, applying
our proposed methodology to several asset classes, we find that the RiskMetrics
method, the historical volatility measure RW1000 and the ARCH-type models
are most affected by model risk, and show that misspecification risk generally

contributes more to model risk than estimation risk.

5.2 Suggestions for Future Research

Whilst we believe that this thesis makes significant contributions to model risk
measurement, of market risk models or of univariate volatility models, there are

still many gaps that need to be filled in, which would expand our knowledge



5.2. Suggestions for Future Research 198

about financial risk management. In the following, we discuss future research

that builds on the findings of this thesis in several directions.

Financial Risk This study produces model risk estimates for the models of mar-
ket risk measures and volatility forecasting in a univariate setting and identifies
the major sources of model risk, namely, parameter estimation risk and model
misspecification risk. First, the analysis may be extended to a multivariate set-
ting. In the diagram of risk estimation process for risk estimates shown in Figure
of Chapter [2| model risk arises at step 2 that would specify and estimate
the models describing the risk factors, which has been addressed in this study,
whilst it would be interesting to estimate model risk occurring at step 3 that

would model the P&L of a portfolio as a function of these risk factors.

Second, the scoring function-based model risk estimation methodology introduced
by Chapter [3] may facilitate other extensions for measuring model risk of the
predictive models. For example, one can investigate the individual VaR model

risk measure by replacing the F'Z class with the GPL class.

Finally, whilst the coherence properties of our proposed model risk measures
based on scoring functions in Chapter [3] and Chapter [4] are examined via Monte

Carlo simulations, these properties await consideration on a theoretical front.

Scoring Function This thesis significantly contributes to the implications of
using scoring functions in measuring model risk. The current literature (e.g.

Gneiting), 2011 and [Patton et al., [2019) documents the implications of using scor-
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ing functions in making model comparisons and estimating model parameters.
However, it is not very clear what consequences the choice of scoring function
will bring about. It may be worth connecting the analysis of model risk measures
based on a single scoring function to measures based on a combination of scor-
ing functions. Another extension would construct a model parameter estimation

methodology drawing on the combined scoring functions using different weights.

Backtesting Chapter [2]relates model error to statistical backtesting, and finds a
correction required for ES in order to pass ES backtests jointly. Another promising
avenue for future research would derive some backtesting methodologies for the
regulatory risk measures like VaR and ES which take into account the effect of

model risk on risk estimates.

Volatility Forecasting Chapter [{]shows that the model risk of the broad (G)ARCH-
type models increases following crisis periods, and that the forecasting ability of
these models can be improved after accounting for model risk. This invites the re-
search on improving on these models. Additionally, what is the relation between
model risk and volatility clustering? To what extent can model risk be explained

by economic/financial variables?

Relatedly, another interesting area of research lies in the stochastic volatility
models as well as the volatility models based on high-frequency data. One may
attempt to quantify the model risk and improve the forecasting accuracy of models

in these categories.
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