
The counter-propagating Rossby-wave 
perspective on baroclinic instability. Part 
III: Primitive-equation disturbances on the 
sphere 
Article 

Published Version 

Methven, J. ORCID: https://orcid.org/0000-0002-7636-6872, 
Heifetz, E., Hoskins, B. J. and Bishop, C. H. (2005) The 
counter-propagating Rossby-wave perspective on baroclinic 
instability. Part III: Primitive-equation disturbances on the 
sphere. Quarterly Journal of the Royal Meteorological Society, 
131 (608). pp. 1393-1424. ISSN 1477-870X doi: 
https://doi.org/10.1256/qj.04.22 Available at 
https://centaur.reading.ac.uk/95/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://www.interscience.wiley.com 
To link to this article DOI: http://dx.doi.org/10.1256/qj.04.22 

Publisher: Royal Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


Q. J. R. Meteorol. Soc. (2005), 131, pp. 1393–1424 doi: 10.1256/qj.04.22

The counter-propagating Rossby-wave perspective on baroclinic instability.
Part III: Primitive-equation disturbances on the sphere

By J. METHVEN1∗, E. HEIFETZ2, B. J. HOSKINS1 and C. H. BISHOP3

1University of Reading, UK
2Tel-Aviv University, Israel

3Naval Research Laboratories/UCAR, Monterey, USA

(Received 16 February 2004; revised 28 September 2004)

SUMMARY

Baroclinic instability of perturbations described by the linearized primitive equations, growing on steady
zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby
waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamil-
tonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for
adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally
conserved. These forms focus attention on Rossby wave activity.

Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated
with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their
structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation,
phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—
potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other
home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the
upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths
the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear,
CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height
of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces.
A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must
tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic
component of the jet.

KEYWORDS: Momentum fluxes Phase-locking Realistic jets Wave-activity orthogonality

1. INTRODUCTION

Baroclinic growth is the essential driving mechanism behind the existence of extra-
tropical weather systems. The first quantitative theories of weather systems considered
the baroclinic instability of normal mode (NM) perturbations to steady zonally-
symmetric flows described by quasi-geostrophic (QG) dynamics (Charney 1947; Eady
1949). The necessary conditions for the baroclinic instability of a basic state in the QG
framework are that the meridional potential-vorticity (PV) gradient must take opposite
signs somewhere within the domain (Charney and Stern 1962) and the zonal wind and
PV gradient should be positively correlated (Fjørtoft 1950).

Bretherton (1966b) showed how baroclinic instability in the Eady and two-layer
(Phillips 1954) models can be viewed in terms of the zonal propagation and interaction
of two counter-propagating Rossby waves (CRWs). In these models, the PV gradient is
only non-zero at two levels and a CRW is associated with zonal propagation on each
one. In general, growth on basic states with three or more distinct locations with non-
zero PV gradient can be described by interactions between CRWs propagating at each
location (e.g. Heifetz et al. 1999). Heifetz et al. (2004a) (hereafter Part I) extended this
QG perspective to general zonal flows where the PV gradient can vary continuously
throughout the atmosphere but, for particular initial conditions, any disturbance consist-
ing of a superposition of a growing NM and its decaying complex conjugate (CC) can
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alternatively be viewed in terms the evolution of a pair of CRWs. Since these CRWs are
derived from the NMs, they cannot describe initial-value problems involving the contin-
uous spectrum (Farrell 1982). The CRW structures are zonally untilted by definition and
can be obtained objectively given the basic state and growing NM structure by imposing
the constraints that the CRWs are orthogonal with respect to pseudomomentum and eddy
energy growth. Evolution equations can be obtained for the CRWs by considering global
integrals of the PV equation or from the Hamiltonian equations for a system where the
CRWs are the basic components with distinct zonal positions and pseudomomenta.

Alternatively, CRW structures can be obtained by the ‘home-base method’ where
the NM and its CC are superposed such that the resulting untilted CRW has zero PV
at a chosen location. The home-base of CRW-1 is defined to coincide with the zero PV
line of CRW-2 so that perturbation PV there is given entirely by the PV of CRW-1,
and vice versa for the home-base of CRW-2. Evolution equations for the CRWs can
then be obtained from the PV equation at the chosen two home-bases. These equations
are homomorphic to the equations for the ‘orthogonal CRWs’ but there are different
expressions for the coefficients determining the propagation rates and growth of the
CRWs. Although the choice of home-bases is subjective, this method has the advantage
that the interaction coefficients depend only upon the PV gradient, the perturbation PV
and the meridional wind that the CRWs induce at these two home-bases. Simple ‘PV-
thinking’ arguments can then be used to deduce the effect of interaction on the CRW
propagation rates, enabling phase-locking and the mutual growth of the CRWs, just as
for the two-layer model (Hoskins et al. 1985).

Heifetz et al. (2004b) (hereafter Part II) calculated CRW structures for the NMs of
the Charney model using both the orthogonality and home-base methods. Provided that
the choice of home-bases is motivated by the structures of the orthogonal CRWs, both
methods give very similar results for the CRW structure, phase difference and phase
speeds. While wave-activity orthogonality can be used to obtain CRWs objectively,
their interaction can be discussed in terms of the meridional wind that each induces
at the other CRW’s home-base. The self-induced phase speed of a CRW is composed
of advection by the zonal wind and its propagation rate on the PV gradient at its own
home-base, given the meridional wind that it induces there. Phase-locking is achieved
when the phase speeds of both CRWs are made equal by interaction.

Here CRW theory is generalized to describe linearized primitive-equation dynamics
on a rotating sphere, making clear the necessary assumptions (section 2). CRW forms
of the necessary conditions for instability are obtained. In section 3, the NM dispersion
relations and their associated CRW structures are investigated for a zonal jet resembling
the mid-latitude jet in a storm-track region, including a realistic potential-temperature
distribution and tropopause. The basic state, referred to as Z1, is the same as used
for the LC1 experiment of Thorncroft et al. (1993) (hereafter THM). The effect of
surface meridional shear on CRW structures, phase difference and phase speeds is then
investigated using the basic state of THM’s LC2 experiment (Z2).

In Part II it was shown how the difference in the scale-dependence of PV inversion
between interior and boundary PV anomalies moulds the dispersion relation of the Char-
ney modes. CRWs must adopt an increasingly ‘hindering’ phase-locked configuration
as the wavelength increases. In particular, the Rossby-wave westward propagation of
the upper CRW relative to the zonal flow is so strong that it has to be increasingly
hindered by the coupling of the two CRWs. This implies that their phase difference ε+
must increase. It is shown in section 4 that the hindering configuration (π/2 < ε+ < π )
of the Charney CRWs also applies to CRWs growing on realistic zonal jets without
surface shear. Also, the change to air-parcel displacement structures of CRWs expected
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in an environment with meridional shear explains why the horizontal momentum flux of
baroclinically growing NMs is always up-gradient when the width of the jet is greater
than the width of the CRW structures at the ground. Balasubramanian and Garner (1997)
proposed that the distribution of NM momentum flux influences the direction of Rossby
wave breaking at upper levels. The companion paper, Methven et al. 2005 (hereafter
Part IV), analyses the properties of CRW theory that provide robust predictions for the
nonlinear evolution of baroclinic wave life cycles.

2. CRW THEORY FOR THE PRIMITIVE EQUATIONS

(a) Conserved properties
The primitive equation form of the theory of CRWs makes use of the same

principles as in the quasi-geostrophic (QG) case; namely the conservation of mass,
potential temperature (θ) and PV following air parcels, and the global conservation of
the disturbance quantities pseudomomentum and pseudoenergy. In this section, CRW
evolution equations are derived and the procedure for obtaining CRWs from a growing
NM is outlined, stating the necessary assumptions about the flow and choices concerning
CRW structure that must be made.

Assumption 1. The flow is adiabatic and frictionless so that mass, θ and Ertel PV (P )
are conserved. Together these properties imply that air moves along isentropic surfaces
and can be traced using PV contours.

Assumption 2. Disturbances are small amplitude and can be linearized about a steady
zonally-symmetric basic state. The PV equation on the sphere in isentropic coordinates
becomes: [

∂

∂t
+ U

∂

∂λ

]
P ′ + v′Py = 0. (1)

Here λ is longitude, φ is latitude, y = aφ is meridional distance, a is the earth’s
radius, U = u/(a cos φ) is the zonal angular velocity of the basic state, and Py is the
meridional derivative of the basic-state potential vorticity. Since the meridional wind
v′ = [∂/∂t + U∂/∂λ]η, the meridional displacement of air parcels, η, can be related
to PV anomalies on isentropic surfaces or θ-anomalies on the lower boundary through
advection of the basic-state gradients:

η(φ, θ) = −P ′

Py
along isentropic surfaces

η(φ) = −θ ′

θy
along lower boundary.

(2)

Wave-like disturbance quantities take the form q ′ = Re{qm(φ, θ) exp(imλ)} where
m is zonal wave number and qm is a complex structure function. An inner product can
be defined for global integrals of quadratic disturbance quantities weighted by mass:

〈p′, q ′〉 =
∫ ∫

p′q ′ ra2 cos φ dφ dθ

=
∫ ∫

1

4
(p∗

mqm + pmq
∗
m)ra

2 cos φ dφ dθ, (3)

where the overbar denotes the zonal average, ∗ represents the complex conjugate and
r = −(1/g)∂p/∂θ is the pseudodensity in isentropic coordinates. Andrews (1983) and
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Haynes (1988) derived expressions for the pseudomomentum and pseudoenergy asso-
ciated with flow described by the hydrostatic primitive equations. Pseudomomentum
is defined for disturbances to zonally-symmetric basic states and pseudoenergy relates
to disturbances to steady basic states. Both quantities are globally conserved, even for
large-amplitude disturbances, if the basic state is both steady and zonal and the flow
is adiabatic and frictionless. Magnusdottir and Haynes (1996) extended the pseudomo-
mentum conservation law to include an important boundary contribution associated with
surface θ-anomalies. If two waves are present, labelled i and j , a pseudomomentum
inner product for small amplitude waves can be defined as:

Pij = 1

2
〈ηi, Qyηj 〉 +

〈−ri

r
, cos φuj

〉
+ 〈ηi, θy cos φδbuj 〉, (4)

where δb = δ{θ − θb(φ)} is a delta function (with units K−1) picking out the ground in
isentropic coordinates at each latitude. Note that the quantities inside the brackets have
units of m s−1 and equal the pseudomomentum density divided by r (see (28) for the
conservation law). The generalized PV gradient:

Qy = r Py cos φ + r P θy cos φδb (5)

plays the same role as the meridional gradient of quasi-geostrophic PV in the QG theory
presented in Part I. The first term in (4) is large wherever meridional displacements can
advect large PV gradients and is, therefore, related to Rossby wave propagation and is
denoted Rij . The second term of (5) only contributes to pseudomomentum at the lower
boundary (denoted Rbij ), through the first term in (4) and has a QG β-plane analogue,
1
2η

2 rf0θy = 1
2η

2g−1(f 2
0 /s

2)∂u/∂p, where s2 denotes the stratification parameter in
pressure coordinates (James 1994). Thus the boundary term is directly equivalent to
the contribution of Bretherton’s delta function of quasi-geostrophic potential vorticity
(QGPV) to the pseudomomentum (Bretherton 1966a). The other two terms in (4) are
not related to PV and can contain contributions from gravity-wave activity, and will
thus be denoted Gij and Gbij .

Following the methods of Magnusdottir and Haynes (1996), a new expression for
pseudoenergy can be derived for small-amplitude disturbances to the hydrostatic prim-
itive equations, including the intersection of isentropic surfaces with the ground. The
corresponding pseudoenergy inner product (divided by a to simplify later expressions)
is defined as:

Hij = 1

2a
〈ui, uj 〉 + 1

2a
〈vi, vj 〉 + 1

2a

〈
pi,

1

r ρg
δbpj

〉
+ 1

a

〈
ηi,

g(r θy)
2

ρ
δb ηj

〉

− 1

2
〈ηi, U Qyηj 〉

−
〈−ri

r
, U cos φuj

〉
− 〈ηi, U θy cos φδbuj 〉, (6)

where pi is disturbance pressure, ρ is density and g is gravitational acceleration.
The top line is the positive-definite wave energy and will be denoted by Eij . The second
line is similar to Rij , but the integral is weighted by the wind U and will be called Wij .
The third line is similar to Gij , but again weighted by U and will be denoted as Fij
(terms defined such that Hij = Eij −Wij − Fij ).
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Choice 1. CRWs will be defined to be untilted in the zonal direction, both meridionally
and vertically. In Part I, it was shown how untilted structures can be obtained by linear
combinations of a growing NM and its decaying complex conjugate. Furthermore, it was
shown that the evolution of any disturbance described by a superposition of one NM and
its CC can alternatively be described by the evolution of the amplitude and phase of any
two (different) untilted structures defined in this way. In general the disturbance PV
structure can be written as:

Pm = a1 eiε1P1 + a2 eiε2P2 (7)

where a1, a2 are the wave amplitudes, ε1, ε2 are their phases and P1, P2 are functions
describing untilted structures and are, therefore, real. All other disturbance quantities
will also be untilted but may be shifted in phase relative to the PV. For example, if the
meridional wind is shifted by phase εv relative to the PV, then one can write:

vm = (a1 eiε1v1 + a2 eiε2v2) eiεv , (8)

where v1 and v2 are also real structure functions.

Assumption 3. Focus on Rossby waves. In order to make progress some assumptions
must be made about the relative phases of disturbance variables. Clearly the parcel
displacement ηi is in antiphase with Pi since PV is conserved and (2) applies (i.e.
εη = π ).

The disturbance flow is assumed to be balanced and, therefore, related to the PV-
anomaly distribution. In this way our attention is focused on Rossby waves. In order that
isolated positive PV anomalies correspond to cyclonic centres, we set εv = −π/2 (i.e.
maximum northward flow occurs midway between cyclonic and anticyclonic centres,
to the east of positive PV anomalies). Note that the structure vi(φ, θ) can be negative,
indicating that the wind at that point is more influenced by far-field PV than the local
PV anomaly.

Similarly, PV inversion can be used to argue that positive PV anomalies are
associated with locally reduced mass between isentropic surfaces so that ri < 0 (εr =
π ). Inversion would also indicate ui > 0 to the south and ui < 0 to the north of each
positive PV-anomaly (εu = 0). Therefore, these regions would tend to cancel each other
in the ‘gravity wave’ terms Gij and Fij , both in the interior and on the boundary. For a
basic state with uniform vertical wind shear and static stability on a β-plane, these terms
would be exactly zero for a Rossby wave. In contrast, Kelvin waves on an equatorial
β-plane contribute zero Rij , Rbij , Gbij but large positive Gij to the pseudomomentum.
Sakai (1989) used Rij and Gij to distinguish Rossby waves from gravity waves and to
investigate their coupling in an ageostrophic version of the Phillips (1954) two-layer
model.

It is assumed hereafter that the truncated pseudomomentum and pseudoenergy
obtained by dropping the ‘gravity-wave terms’ (Gij and Fij ) are approximately con-
served. Thus, although no explicit PV inversion relation has been assumed, the neglect
of these terms focuses attention on Rossby wave motions. Note that this is not the same
as making the QG approximation. In particular, meridional displacements associated
with ageostrophic motions can contribute to Rij , whilst the effects of sphericity on
geostrophic motions can contribute to Gij . In the cases examined, the neglected terms
are indeed found to be small (see section 3(a)). Since the remaining terms are symmetric
with respect to wave labels:

R12 = R21; W12 = W21; E12 = E21,
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then the total truncated pseudomomentum for a CRW pair is:

Rtot = 1
2 〈η, Qyη〉 = a2

1R11 + a2
2R22 + 2a1a2R12 cos ε, (9)

where the phase difference ε = ε2 − ε1. The truncated pseudoenergy is:

Htot = a2
1(E11 −W11) + a2

2(E22 −W22) + 2a1a2(E12 −W12) cos ε. (10)

(b) CRW construction from normal modes using wave-activity orthogonality
The CRWs can be determined from the growing NM by considering their ampli-

tudes and relative phases when phase-locked. Phase-locking is always approached at
long times for any disturbance composed of a growing NM and its decaying CC. The
growing NM displacement structure is tilted and is therefore complex. For example, the
meridional displacement ηm = ηr + iηi can be related to the CRW structures by taking
Re(ηm) and Im(ηm) where ηm is partitioned into CRWs as in (7). This relationship can
be inverted to find:

η1 = b1(ηr + e1ηi)

η2 = b2(ηr + e2ηi),
(11)

where b1a1 = sin ε+
2 /sin ε+, b2a2 = −sin ε+

1 /sin ε+, e1 = −1/tan ε+
2 and e2 = −1/tan

ε+
1 . Here, ε+

1 and ε+
2 indicate the CRW phases required to reconstruct the growing

NM, and ε+ = ε+
2 − ε+

1 is their phase difference. In order to find the CRWs, we must
determine four unknown coefficients: b1, b2, e1 and e2. The wave-activity orthogonality
method is an objective means to determine the coefficients from any NM structure.

Choice 2. The CRW pair is chosen to be orthogonal with respect to truncated pseudo-
momentum

R12 = 0, (12)

so that the total pseudomomentum reduces to Rtot = a2
1R11 + a2

2R22. It is clear from (4)
and (5) that the pseudomomentum takes on the sign of Py in the interior and P θy on the
boundary. Thus, if Rtot is constant in time, the amplitude of particle displacements can
only increase everywhere if Py and/or boundary P θy take on different signs where the
wave activity is located, so that the CRWs have opposite signed pseudomomentum. This
is an extension of the Charney and Stern (1962) conditions for instability that is valid for
the hydrostatic, primitive equations to the extent that the truncated pseudomomentum is
conserved.

Note that an unstable NM on its own has zero pseudomomentum, but the super-
position of a NM with its CC has non-zero pseudomomentum in general (Held 1985).
From the CRW perspective, the total pseudomomentum is composed of fixed contri-
butions from each CRW, scaled by their amplitude squared. In the phase-locked con-
figuration Rtot = 0. Hayashi and Young (1987) interpreted instability on shear flows in
the shallow-water model in terms of two ‘resonating wave components’; instability can
occur when the components have opposite signed pseudomomentum, their Doppler-
shifted ‘intrinsic phase speeds’ are similar and interaction is possible. Sakai (1989)
showed that the necessary conditions for baroclinic instability in the ageostrophic two-
layer model are essentially the same. He partitioned NMs of the full problem into ‘wave
components’ that were obtained as eigenvectors of the one-layer systems where the
perturbation pressure in one or the other of the layers is zero. These wave components
propagate almost as they would in a single layer, but with an interaction mediated by the
interface between the layers (since it is displaced by both waves). Although his method
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of partition is not possible for multi-layer models, the orthogonal CRWs obtained for
the two-layer model are similar to his Rossby wave components. Sakai (1989) showed
that, in addition to baroclinic and Kelvin–Helmholtz instability arising from the interac-
tions of Rossby-wave pairs and gravity-wave pairs, a mixed Rossby wave—Kelvin wave
(RW–KW) instability also occurs in the two-layer model. It arises when a Kelvin wave
in the upper layer (R22 = 0, G22 > 0) interacts with a Rossby wave in the lower layer
(R11 < 0,G11 = 0). It is possible that RW–KW interaction occurs in the hydrostatic PEs,
but it cannot be analysed using our version of CRW partition because the truncation of
pseudomomentum and pseudoenergy deliberately neglects the gravity-wave terms.

It is now possible to consider the CRWs as fundamental components of a conserva-
tive system with pseudomomenta (p1, p2) = (a2

1R11, a
2
2R22) and positions (x1, x2) =

(ε1/m, ε2/m), with a Hamiltonian equal to the truncated pseudoenergy (10).
The Hamiltonian equations

∂pi

∂t
= −∂H

∂xi
; ∂xi

∂t
= ∂H

∂pi
(13)

reduce to the CRW evolution equations (as shown in Part I):

ȧ1 = −γ 1
2 a2 sin ε

ȧ2 = γ 2
1 a1 sin ε

ε̇1 = −mc1
1 + γ 1

2
a2

a1
cos ε

ε̇2 = −mc2
2 + γ 2

1
a1

a2
cos ε,

(14)

where the CRW interaction coefficients are γ 1
2 = m(E12 −W12)/R11 and γ 2

1 =m(E12

−W12)/R22. The CRW self-induced phase speeds are c1
1 = (W11 − E11)/R11 and c2

2 =
(W22 − E22)/R22.

In addition, substituting (11) into the orthogonality condition gives the first equation
to determine the CRW coefficients:

Rrr + e1e2Rii + (e1 + e2)Rri = 0, (15)

where Rir = Rri has been used.

Choice 3. CRWs are made orthogonal with respect to the wind-weighted term

W12 = 0. (16)

As discussed in Part I, this makes the CRWs orthogonal with respect to eddy energy
production to the extent that the truncated pseudoenergy is conserved. Although each
CRW enables the other to grow, the total eddy-energy growth can be partitioned between
the two CRWs∗. Energy growth is large if W11 + W22 is large and positive, implying
that the zonal angular velocity and PV gradient must be positively correlated in the
regions where the wave activity of each CRW is concentrated. This can be regarded as
the primitive equation CRW version of the Fjørtoft (1950) condition for instability.

∗ CRWs are untilted and, therefore, could not contribute to eddy-energy production in isolation. However, (33) in
Part I shows that eddy-energy production occurs when CRW interaction enables growth in wave amplitudes, a1
and a2, provided that W11 + W22 > 0, from (44) of Part I.
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Substituting from (11) into this second orthogonality condition gives the second
equation for the CRW coefficients:

Wrr + e1e2Wii + (e1 + e2)Wri = 0. (17)

Together (15) and (17) determine e1 and e2 (or, equivalently, the CRW phases ε+
1 and

ε+
2 ) required to reconstruct the growing NM.

Choice 4. CRWs are normalized with respect to truncated pseudomomentum

R11 = −R22, (18)

which implies that the interaction coefficients are equal and opposite,

γ 2
1 = −γ 1

2 =mE12/R22 = σ, (19)

and proportional to the interaction energy (using W12 = 0). Hereafter, the CRW with
negative pseudomomentum is always defined as CRW-1 so that the interaction strength
σ is positive. CRW-1 will tend to have greatest displacements near the ground where the
negative temperature gradient results in negative Qy , and thus will be referred to as the
lower CRW.

In addition, note that the self-induced phase speeds can be expressed as

cii = Ui − γ i
i /m, (20)

where γ i
i /m= Eii/Rii is the self-induced counter-propagation rate and

Ui = Wii

Rii

(21)

is referred to as the ‘home-base wind’ of CRW-i. It describes the globally integrated
effect of advection by the zonal flow on this CRW.

When the CRWs are phase-locked in the NM configuration they grow at the same
rate, ȧ1 = ȧ2. Equations (14) with (19) then indicate that the CRWs must have equal
amplitudes, a1 = a2. Moreover, the growing NM is reconstructed with its original
amplitude when a1 = a2 = 1, giving the following relations:

b1 = sin ε+
2

sin ε+ , b2 = −sin ε+
1

sin ε+ , (22)

completely specifying the CRWs from the growing NM structure via (11).
In a phase-locked state ε̇1 = ε̇2, so that (14) relates the phase difference to the CRW

self-induced phase speeds and interaction strength

cos ε+ = m(c2
2 − c1

1)

2σ
. (23)

There are two such states corresponding to the growing NM and its decaying complex
conjugate. The growing mode has growth rate σ+ and phase speed cr and is obtained
when the phase difference between the CRWs is in the range 0 < ε+ < π . Equation (14)
can be rearranged to deduce the relations:

σ = σ+/sin ε+

c1
1 = cr − (σ/m) cos ε+

c2
2 = cr + (σ/m) cos ε+.

(24)
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In synopsis, given a growing NM structure on a zonally-symmetric basic state
we can construct two orthogonal CRWs. Their coupling describes the evolution of
perturbations that can be constructed initially from that growing NM and its decaying
CC. The amplitude ratio and phase difference of the CRWs changes with time, but
always approaches the growing NM configuration for σ t > 1. Furthermore, it is possible
to deduce the maximum possible instantaneous growth rate, σ , and the self-induced
phase speeds of the CRWs directly from the NM growth rate and phase speed, once
the phase difference in the locked configuration, ε+, has been determined from the
orthogonality constraints.

(c) Application of PV-thinking to orthogonal CRWs
The chief advantage of the CRW description of the evolution is that each CRW has

a simple structure, being zonally untilted, and the mechanism of both modal and non-
modal baroclinic growth can be understood using PV-thinking concepts, as described
by Bretherton (1966b), Hoskins et al. (1985) and Bishop (1993). In order to apply
PV-thinking we need to be able to describe CRW evolution in terms of their zonal
propagation and interaction at only two locations in the meridional plane—the CRW
home-bases. This description applies exactly to CRWs obtained by the home-base
method (see the introduction and Part I) if the initial conditions can be described by
the superposition of a growing normal mode and its complex conjugate. The method is
readily generalized to the adiabatic primitive equations by identifying the meridional
displacements of air parcels with Ertel PV anomalies on isentropic surfaces and θ
anomalies on the ground (2). The CRW evolution equations obtained are the same as
those from the orthogonality method (14) with (20), except that the expression for the
interaction coefficients is replaced by:

γ i
j = −vj

ηi

∣∣∣∣
i

, (25)

where the meridional wind induced by CRW-j and the meridional displacement of
CRW-i are evaluated at the home-base of CRW-i. In section 3(a) it is shown that the
CRW structures and phase difference, ε+, obtained by the two methods are very similar,
provided that the choice of home-bases is motivated by the PV structure of the lower
orthogonal CRW, P1. The lower CRW’s home-base is located at the ground at the
latitude of maximum P1 and the upper CRW’s home-base is located where the zonal
flow matches the home-wind U2 (21), close to the P1 = 0 line. The consequence is that
the PV-thinking analysis of interaction applies to a good approximation to the orthogonal
CRW structures.

3. CRW STRUCTURES AND THEIR COUPLING FOR REALISTIC JETS

(a) Method for calculating CRWs in a global model
The CRW analysis of the last section is now applied to a realistic zonally symmetric

jet. The aim is to clarify the features of the flow that are important to perturbation
growth, and to understand the structures of the perturbations. The jet studied in this
section, Z1, was used originally by Simmons and Hoskins (1980) and more recently by
THM in their LC1 experiment. Figure 1(a) shows a latitude–pressure cross-section of
the basic-state potential temperature and zonal flow which are in thermal wind balance;
the tropopause is also indicated. Note that the jet maximum and the maximum |θy | are
at 46◦N and that the zonal wind is zero at the surface.
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a) b)

c) d)

Figure 1. The basic state Z1. (a) θ (contour interval 5 K up to 350 K) and zonal angular velocityU = u/(a cos φ)
(contour interval 4 deg day−1) in σ -coordinates. The thick line marks the 2 PVU (= 2 × 10−6 K kg−1m2s−1)
tropopause. (b) U in isentropic coordinates. The heavy line marks the ground. (c) The Ertel potential vorticity
(PV) (contour interval 1 PVU). (d) The isentropic PV-gradient measure Qy (contour interval 1 × 10−11 m−1s−1

up to 17). In all panels, positive contours are solid, the zero contour is dashed and negative contours are dotted.

In order to perform the CRW analysis it is necessary to interpolate the basic-state
fields onto isentropic surfaces using linear vertical interpolation from the σ -coordinates
of the primitive-equation spectral model of Hoskins and Simmons (1975). For the CRW
calculations the model has spectral truncation T42 and there are 15 levels located
at σ = 0.018, 0.060, 0.106, 0.152, 0.197, 0.241, 0.287, 0.338, 0.400, 0.477, 0.569,
0.674, 0.784, 0.887, 0.967. The fields are interpolated onto isentropic surfaces with
a spacing of 2 K and a maximum value θK = 400 K. The zonal angular velocity,
u/(a cos φ), and PV are shown in isentropic coordinates in Figs. 1(b) and (c). Note that
the isentropic coordinates stretch the top of the model domain, since isentropic density,
r , falls with height from about 300 kg m−2K−1 at the surface to about 120 kg m−2K−1

at 2 PVU∗, and then rapidly across the tropopause zone to 30 kg m−2K−1 at about
6 PVU. The isentropic PV gradients are calculated using centred differencing of the
interpolated PV field and are set to zero at the grid points closest to the lower boundary
on each θ-surface, giving rise to the step-like nature of the field close to the lower
boundary. Figure 1(d) shows the PV gradient term that appears in the definition of wave-
activity density, r Py cos φ. Although it has a clear maximum along the tropopause, the
PV-gradient measure is also significant in the mid-latitude troposphere and stratosphere

∗ Potential vorticity unit: 1 PVU = 10−6 K kg−1m2s−1.
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a) b)

d)c)

Figure 2. Wave-activity density for m = 7 disturbances to the Z1 jet. Panels (a) and (c) show the interior
pseudomomentum density, 1

2η
2
i r

2 Py cos φ, for the upper and lower CRWs with an amplitude ratio appropriate
for normal mode (NM) reconstruction. (b) Shows the gravity-wave component for the real part of the NM
structure, −rrur cos φ (magnitude multiplied by five). (d) The boundary pseudomomentum density. The solid
line shows the contribution from the upper wave, 1

2η
2
2r

2 P θy cos φ, the dotted line is that from the lower wave,
1
2η

2
1r

2 P θy cos φ, and the dashed line is for the real part of the NM, 1
2η

2
r r

2 P θy cos φ. The dash-dot line is the
neglected G-term r θy cos φηrur.

where its value is several times larger than the planetary-vorticity gradient (β ≈ 1.6 ×
10−11 m−1s−1). There are also two regions of weak negative PV gradient in the
stratosphere.

The normal modes (NMs) for this jet were obtained as the eigenvectors of the
tangent-linear propagation matrix for the primitive-equation model, as described by
Wyatt (1981). The complex eigenvalues obtained gave the growth rate and phase speed
of each mode. For details of the method used to calculate values for the elements of the
propagation matrix refer to Hoskins and Karoly (1981). In the global spectral model the
complex structure functions for each NM, Pm, are obtained directly from the spectral
coefficients, P n

m, by summing over total wave number n:

P ′(λ, φ, σ ) = Pm(φ, σ ) eimλ =
{ N∑

n=m

2P n
m(σ )L

n
m(φ)

}
eimλ, (26)

where Ln
m(φ) are associated Legendre functions. Only the structure of the fastest

growing NM for each m was calculated. The displacement structure functions were
found by interpolating the real and imaginary parts of the NM PV structure onto
isentropic surfaces, as for the basic state, and then using (2). The inner products (3) were
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calculated using Gaussian quadrature for integration over latitude and the trapezium rule
for integration over θ .

As explained by Magnusdottir and Haynes (1996), wave-activity density is only
defined in closed regions where particle displacements do not cross the Py = 0 lines.
Within these regions there is a unique relationship between particle displacements and
PV anomalies. Consequently, for their analysis of pseudomomentum fluxes in nonlinear
baroclinic life cycles they modified the Z1 basic state by an adiabatic PV rearrangement
so that the interior PV gradient was everywhere positive. This modification was found
to have minimal effects on the life cycles, even in the small-amplitude stage. In the
linear analysis here, particle displacements are arbitrarily small and we expect the
pseudomomentum density either side of a Py = 0 line to cancel to a large extent in
the integral (4). Therefore, it was not thought to be necessary to rearrange the basic state
but, at neighbouring grid points with latitudes spanning a Py = 0 line, the displacements
were set to zero in order to avoid huge values in the displacement field there. It was found
that the phase-locked angle, ε+, and, therefore, the CRW structures were insensitive to
this modification of the displacement field.

Although the NM amplitudes are arbitrary we have scaled them such that their
maximum surface pressure perturbations are all 10 hPa. This enables comparison of
different CRW structures under the same norm.

(b) The fastest-growing structures
Figures 2(a) and (c) show the interior pseudomomentum density for the upper and

lower CRW associated with the fastest growing NM for the Z1 jet (which has m = 7).
It is immediately apparent that both CRWs have greatest pseudomomentum density
where the baroclinicity, |θy |, is large. Figure 2(d) shows the boundary contribution to
the pseudomomentum density for each CRW. The lower CRW has a distinct minimum
at 46◦N where θy is most negative. Its interior pseudomomentum density is also greatest
in the vicinity of this latitude and is confined to the lower troposphere. The upper
CRW has an almost negligible signal at the boundary and two distinct maxima in
pseudomomentum density: one in the mid-troposphere and the other at the tropopause.

In order to construct orthogonal CRWs we have neglected the ‘gravity wave’
pseudomomentum density terms, Gij . Its interior and boundary contributions are shown
for the real part of the growing NM in Figs. 2(b) and (d). The boundary contribution
has the same sign as the interior contribution near the boundary since there is not the
sign reversal associated with the PV gradient terms. It is clear from the form of G
that a Rossby wave that is symmetric about a reference latitude on a β-plane would
be associated with an equal and opposite sign in G to either side of this latitude, and
thus G would not contribute to the pseudomomentum. However, the spherical geometry
lends greater weight to the equatorward lobe, resulting in net negative contributions
from the interior and boundary. However, the magnitude of the integral Grr is about 30
times smaller than the pseudomomentum of the upper CRW, R22.

The meridional-wind structure function, v′, is positive for the upper CRW
(Fig. 3(a)), consistent with the cyclonic circulation induced by its positive interior PV
anomalies (Fig. 3(b)). However, the PV structure for the lower CRW is mainly negative
(Fig. 3(d)) even though v′ is positive (Fig. 3(c)), implying that its cyclonic circulations
are centred on negative interior PV anomalies. This is because the velocity induced by
the interior PV anomalies of the lower CRW is overpowered by the velocity associated
with its surface potential-temperature anomalies, which are in antiphase. A poleward
meridional displacement at the ground must result in both a positive boundary PV (θ)
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a) b)

c) d)

Figure 3. Counter-propagating Rossby-wave (CRW) structures in meridional wind, v′, (left-hand panels) and
perturbation PV for m= 7 (right-hand panels), shown in σ -coordinates. Panels (a) and (b) show the upper CRW,
and (c) and (d) show the lower CRW. The PV perturbations, P ′, are divided by the basic-state PV, P , for reasons
that are discussed in the text. The contour interval corresponds to 1 m s−1 for v′ and 0.05 for P ′/P when the NM
surface-pressure amplitude is 10 hPa. On these PV plots the bold curve indicates the steering surface, U = cr, and
the diamond shows the latitude of the maximum boundary wave-activity density of the lower CRW—see Fig. 2(d).

anomaly and an opposing negative anomaly in interior PV. The partial cancellation of
the cyclonic wind induced by boundary PV by interior PV anomalies results in a rapid
decay of the lower CRW’s velocity with height (Fig. 3(c)) compared with the upper
CRW’s velocity.

Figure 4 shows vertical cross-sections along the latitude of maximum |θy |. The
meridional wind and PV of each CRW are shown with the appropriate phase and
amplitude to reconstruct the growing NM. The phase difference between the upper
wave’s PV anomalies and the lower wave’s θ anomalies is ε+ = 112.4◦, so that the
NM’s velocity field tilts westwards with increasing height (see Fig. 4(e)). Since the
interior PV of the lower wave is in antiphase with its surface θ anomalies, the interior
PV field of the NM tilts eastwards with height (Fig. 4(f)).

Note how the PV of the upper wave (Fig. 4(b)) is almost zero on the ground,
indicating that it has almost no displacement amplitude there. This in turn implies
that it must have almost no boundary wave activity (as seen in Fig. 2(d)). The lower
CRW (Fig. 4(d)) has one level of zero PV at σ ≈ 0.62, which closely corresponds with
the tropospheric maximum PV amplitude of the upper CRW. These two levels can be
associated with the ‘home-bases’ of the CRWs. If CRWs were to be constructed from
the NMs by the home-base method, the upper CRW would be defined as the untilted
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a) b)

e)

c)

f)

d)

Figure 4. Zonal structure at the latitude of maximum surface θy (46◦N) in meridional wind (left-hand panels)
and PV (right-hand panels) for m = 7, shown in σ -coordinates for (a) and (b) the upper CRW, (c) and (d) the

lower CRW, and (e) and (f) the fastest-growing NM. Contour intervals are the same as in Fig. 3.

structure with identically zero displacement at the ground (and, therefore, positive-
definite pseudomomentum). The PV of the upper CRW obtained by this method closely
resembles Fig. 4(b). The lower CRW would be defined as the untilted structure with zero
displacement at the level of the upper CRW’s tropospheric PV maximum. As a test, two
home-bases were used for the upper CRW corresponding to the model level above and
below its mid-tropospheric PV maximum at 46◦N (σ = 0.569, 0.674). The lower CRWs
obtained were very similar to the orthogonal CRW in Fig. 4(d) but with P1 = 0 lines
displaced upwards and downwards, respectively. The phase-locked angle also spanned
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a) b)

Figure 5. (a) The perturbation Ertel PV, P ′, and (b) the quasi-geostrophic PV, q ′, for the upper CRW (compare
with Fig. 3(b) in which P ′/P is shown).

the value obtained from the wave-activity (WA) orthogonality method (ε+ = 111.4◦
and ε+ = 131.9◦ from the home-base method as opposed to ε+ = 112.4◦ from WA
orthogonality).

The propagation and interaction of ‘home-base CRWs’ can be described exactly by
considering only the zonal flow, the PV gradient, their PV anomalies and the induced
meridional wind at the two home-bases (as in Fig. 1 of Part I). Since the phase-
locked angle deduced by the home-base method is very close to the result from the
orthogonality method, the interaction strength and self-induced phase speeds obtained
by both methods using (24) must also be similar. Therefore, the interaction between
‘orthogonal CRWs’ can be described to a good approximation by the meridional wind
that their PV anomalies induce at the ground and the level where the zonal flow on the
jet axis matches the home-base wind (21) of the upper CRW.

Note that P ′/P has been used to display the PV anomalies in Figs. 3 and 4.
By way of comparison, we show the Ertel PV anomaly P ′ and the QGPV anomaly
q ′ for the upper CRW in Figs. 5(a) and (b). Although the pseudomomentum density
maximum (Fig. 2(a)) is clearly located in the mid-troposphere, P ′ only picks out the
anomaly at the tropopause. In contrast, q ′, which has a known inversion relationship with
geostrophic wind, picks out both pseudomomentum density maxima. Since the mid-
tropospheric maximum is closer to the lower boundary and QGPV inversion is linear, it
is clear that this maximum will be at least as important for the baroclinic coupling and
growth as the anomaly at the tropopause. The upper CRW’s velocity structure (Fig. 3(a))
extends throughout the troposphere, which also highlights the importance of the mid-
tropospheric PV anomaly. The diagnostic P ′/P has been used to reduce the effects of
the basic-state pseudodensity’s (r) decrease with height and to highlight both maxima.
Its structure (Fig. 3(b)) is similar to the QGPV structure because under QG scaling
q ′ = rP ′ ≈ f0P

′/P . Since P ′/P = (ln P )′ it is reasonable to suppose that ln P , which
is also a conserved quantity, may be a more revealing diagnostic than Ertel PV itself
when examining nonlinear wave development. However, its use is restricted to regions
where P > 0. Lait (1994) has suggested other functions of Ertel PV and θ in order to
combat this problem.
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(c) Variation with zonal wave number

(i) Dispersion curves. The growth rates for all the growing NMs obtained from the
eigenvalue solution∗ for the Z1 jet fall into four distinct branches and are shown in
Fig. 6(a); Fig. 6(c) shows their phase speeds. It is clear that the slower-growing branches
are associated with smaller phase speeds and thus have steering levels closer to the
ground. Since these modes have a smaller-scale structure they are expected to be more
sensitive to dissipation, and indeed this is found to be the case. Table 1 explores the
sensitivity of the growing modes for wave number 6 to a change in the strength of
the diffusion coefficient. It is clear that branches 1 and 2 are quite insensitive to the
dissipation but that branches 3 and 4 are very sensitive. Since the CRW theory relies on
the conservation of PV, θ , pseudomomentum and pseudoenergy, and in each case the
conservation is violated by dissipation, it is consistent only to look at modes that are
affected weakly by the diffusion. In the following discussion of disturbances to the Z1
jet we concentrate only on the first branch.

The CRW phases in the locking configuration were obtained for all zonal wave
numbers in the first branch of NMs using the orthogonality constraints (15) and (17).
(24) then gives the interaction strength, σ , and self-induced phase speeds of the CRW
structures. σ also quantifies the maximum instantaneous growth rate that can occur
for a disturbance described by this pair of CRWs or, alternatively, the growing NM
and its complex conjugate. Although super-modal growth is possible, its rate does not
greatly exceed the NM growth rate (see Fig. 6(a)) since sin ε+ is almost one. Although
the home-base wind (21) of the upper CRW is much greater than that of the lower
CRW (Fig. 6(d)), its self-induced phase speed (advection plus self-propagation) is
typically less (Fig. 6(c)). Phase-locking can only be achieved if the strong westward
self-propagation of the upper CRW against the eastward flow is hindered by interaction
so that its phase speed, c2

2, increases to that of the NM, cr. The strong eastward self-
propagation of the lower CRW is reduced by the same amount so that its phase speed,
c1

1, decreases to cr. Hindering behaviour, together with growth, occurs whenever the
phase-locked angle satisfies π/2 < ε+ < π , as seen for m� 12 in Fig. 6(b).

The home-wind (21) of the lower CRW, U1, is negative because its negative
boundary pseudomomentum dominates R11, while W11 is positive since U = 0 at the
ground. As the wave number decreases the Rossby scale height, af/(Nm), increases and
the influence of the lower CRW extends further above the lower boundary. Since U rises
with height, the lower CRW’s home-wind, W11/R11, becomes more negative (Fig. 6(d)).
The upper CRW structure also shifts upwards so that its home-wind increases (both W22
and R22 are positive). At the lowest wave numbers its wave activity is concentrated near
the jet maximum, which also coincides with the tropopause in the region of greatest
baroclinicity.

(ii) Long-wave structure. As an example of long-wave behaviour, the CRW structures
with zonal wave number 4 are shown in Figs. 7(a) and (c). The upper CRW (Fig. 7(a))
has two strong PV maxima just above the steering level and at the tropopause near the

∗ Note that only 45 modes are growing out of a total of 15 × 420 modes for zonal wave numbers m� 2 in the T42,
L15 spectral model. This is a result of the four-hour ∇6 hyperdiffusion that is applied to the prognostic variables
(vorticity, divergence and temperature) in order to make the full model computationally stable. It is added in the
linear NM calculation in order to damp unrealistic modes with structure close to the truncation limit of the model.
The effect of diffusion is to subtract the same factor from the growth rate of a growing NM, σ+, and the growth
rate of its decaying CC, σ− = −σ+. If dissipation is strong compared with the baroclinic growth then both modes
will become decaying modes. Simmons and Hoskins (1977) have shown similar results for a slightly different jet.
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hindering

helping

Figure 6. NM and CRW dependence on zonal wave number m for the Z1 jet. (a) The NM growth rates, σ+.
The heavy solid line marks branch 1 (the fastest-growing modes) and the heavy dotted line shows the interaction
strength, σ , for this branch. The dotted, dashed and dash-dot lines show σ+ for branches 2, 3 and 4, respectively.
(b) The CRW phase difference, ε+, when phase-locked into the growing NMs of branch 1. (c) The NM phase
speeds, using the same line style for each branch as used for growth rate. The heavy dashed and dotted lines show
the self-induced phase speeds of the upper and lower CRWs, respectively, for branch 1. (d) The heavy dashed and
dotted lines show the home-wind of the upper CRW, U2, and the lower CRW, U1, and the solid line is the NM

phase speed for branch 1. The dotted lines indicate the maximum and minimum U in the basic state.

TABLE 1. THE EFFECTS OF DIFFUSION ON m = 6 NORMAL-MODE PERTURBATIONS TO
THE Z1 JET

Diffusion timescale σ1 σ2 σ3 σ4 c1 c2 c3 c4
(hr)

0.4 0.693 0.340 0.060 < 0 11.60 9.96 6.69
4 0.705 0.424 0.250 0.071 11.89 10.89 8.56 6.40

40 0.706 0.442 0.302 0.174 11.94 11.13 9.22 7.63

The first four columns show the growth rate (day−1) and the second four show the phase speed
(deg day−1) of the only growing modes for this wave number when the diffusion timescale is
4 hr. The diffusion timescale refers to diffusive decay rate of the highest retained wave number,
here 42, in the spectral model.

latitude of maximum baroclinicity. The lower CRW (Fig. 7(c)) has most negative tropo-
spheric PV at around 50◦N, coincident with the maximum in PV gradient (Fig. 1(d)). Its
greatest boundary wave activity (marked by the diamond) has shifted polewards of the
maximum |θy | (cf. m = 7 in Fig. 3(d)), indicating that boundary θ-anomalies become
less dominant over the lower CRW’s interior PV anomalies in the induction of surface
wind as wavelength increases. This behaviour was crucial to the existence of westward
propagating neutral planetary-scale modes in the Charney model (see Part II).
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a) b)

c) d)

Figure 7. CRW structures for zonal wave numbers 4 and 11 from the fastest-growing branch for the Z1 basic
state. Panels (a) and (c) show the PV of the upper and lower CRWs for m = 4, and (b) and (d) the PV of the upper

and lower CRWs for m = 11. Contouring as for Fig. 3.

In addition, the wave number 4 upper CRW (Fig. 7(a)) has pronounced negative
PV anomalies that flank its positive PV anomalies, particularly at the tropopause. These
flanks are also negative in the induced meridional wind structure (not shown), implying
westward Rossby wave propagation on the positive PV gradient in those regions,
maintaining the untilted CRW structure. It is also clear that these negative flanks oppose
the positive PV maximum, thus reducing the winds that the upper CRW induces and the
strength of baroclinic interaction. Note the dramatic drop in interaction strength, σ , for
m< 6 in Fig. 6(a), such that m = 2 modes are almost neutral.

(iii) Short-wave structure. For short-waves (m> 7), as the wave number increases the
strength of interaction decreases (Fig. 6(a)) so that the propagation rate of each CRW
is less affected by interaction. In addition, the westward self-propagation rate of upper
CRW diminishes more rapidly with wave number (γ 2

2 /m∼ m−2) than its home-wind, or
the eastward, self-propagation rate of the lower CRW (c1

1 ∝ m−1) so that phase-locking
can only occur when the PV of the upper CRW is concentrated just above the level where
U matches c1

1 (i.e. c2
2 ≈ U2 ≈ c1

1). Since the NM phase speed cr = (c1
1 + c2

2)/2 ≈ c1
1, the

steering level of the NM must be located immediately below the upper CRW (Fig. 7(b)).
The ‘home-wind’ of the upper CRW (Fig. 6(d)) asymptotes towards the NM phase speed
as wave number increases. The lower CRW clearly becomes dominated by boundary
wave activity so that U1 → U(0).

Figure 7(d) shows the PV structure of the lower CRW for m= 11. Meridional
displacements are greatest near the ground in the mid-latitudes. Consequently, the
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a) b)

Figure 8. Basic state Z2. (a) θ and zonal angular velocity U = u/(a cos φ) in σ -coordinates, and (b) U in
isentropic coordinates. Contouring as for Fig. 1.

interior PV maximum is centred at the latitude of greatest tropospheric PV gradient
(49◦N) but the boundary wave activity (marked by the diamond) is centred where |θy |
is greatest (46◦N). For short waves, the mid-tropospheric PV maximum of the upper
CRW (Fig. 7(b)) clearly overwhelms the PV anomalies at the tropopause, making the
similarity with Charney modes transparent.

(d) The effect of surface shear on CRW structures
Here, we examine the effects of additional barotropic shear associated with surface

pressure gradients on CRW structures using the Z2 jet from THM. The Z2 basic state
has an identical temperature structure to that of Z1, but a meridional surface pressure
gradient is imposed. Zonal wind is then obtained iteratively from temperature and
surface pressure using thermal wind balance. The resulting basic state has surface
westerlies centred at about 20◦N and surface easterlies centred at about 50◦N and is
shown in Fig. 8(a). The meridional PV gradient is changed very little by the shear and
its pattern closely resembles Fig. 1(d) except that the tropospheric maximum is slightly
smaller.

The growing NM growth rates and phase speeds were obtained by the same method
as for Z1 (using four-hour ∇6 diffusion). In this case, five clear branches were identified
containing 54 NMs in total. As for Z1, only branches 1 and 2 are insensitive to the
diffusion coefficient. Branches 4 and 5 have nearly constant, low phase speeds (cr ≈
4.0 deg day−1, 2.0 deg day−1) and the growth rate maxima are also low (0.137 day−1,
0.074 day−1). For clarity, only the first three branches are shown in Figs. 9(a) and (c).
Note that branch 2 is the fastest growing for m = 2, 3 and 12, but branch 1 is faster at
all other wave numbers.

Branch 1 shares similar characteristics to those of the modes of the Z1 jet. However,
phase speeds are much lower for the Z2 case because the surface zonal wind at the
latitude of maximum baroclinicity is negative. The phase difference in the locking
configuration, ε+, decreases with wave number (Fig. 9(b)), as expected for Charney-
like modes, but even shifts into the ‘helping’ regime for m � 8, which cannot occur in
the absence of surface meridional shear (explained in section 4(a)).

The lower CRWs for branch 1 of the Z2 jet shift equatorwards with wave number
(see Fig. 1(a) in Part IV), resulting in an increase in U1 (Fig. 9(d)) due to the cyclonic
surface shear (Fig. 8(b)). Therefore, the decrease in the self-induced speed of the lower
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Figure 9. The NM and CRW dependence on zonal wave number m for the Z2 jet. (a) Normal-mode growth rate,
(b) CRW phase difference, (c) phase speeds, and (d) home-winds of the two CRWs. Details as in Fig. 6.

CRW, c1
1, with wave number form> 6 (the bold dotted line in Fig. 9(c)) is not as marked

as for the Z1 CRWs (Fig. 6(c)). As a result, the NM phase speed barely decreases
at high wave numbers. Note that the CRWs for branch 2 shift polewards with wave
number, resulting in a steady decrease in phase speed with wave number (the dotted line
in Fig. 9(c)).

As the wave number increases, the PV structures of the branch 1 CRWs growing
on the Z2 jet slant∗ increasingly polewards with height. In the planetary-wave limit the
additional surface shear appears to have little influence; the upper and lower CRWs for
the m = 4 mode growing on the Z2 jet have almost identical structure to the m= 4 mode
of the Z1 jet (Figs. 7(a) and (c)). However, Figs. 10(b) and (d) show that the slant of the
PV of the upper and lower CRWs for the fast growing m = 7 mode is the most obvious
difference from the m= 7 CRWs on the Z1 jet (Fig. 3(b) and (d)). Note that the positive
interior PV of the upper CRW lies equatorward of the negative interior PV of the lower
CRW at all heights.

Figures 11(a) and (c) show that the slant of the short waves in branch 1 is more
extreme, and still the PV anomalies of the upper CRW lie equatorward of the lower
CRW at all heights. In contrast, the m = 11 CRWs on the Z1 jet exhibit almost no slant
(Figs. 7(b) and (d)).

∗ The term ‘slant’ is used exclusively to describe structures in the y–z plane, as opposed to ‘vertical tilt’ in the
x–z plane and ‘horizontal tilt’ in the x–y plane.
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c) d)

Figure 10. As Fig. 3, but for the fastest-growing mode on the Z2 jet for m = 7.

The slant of CRW displacement structures is influenced by three features of the
basic state: the slopes of its U , Py and θ surfaces. An explanation is as follows.
The phase speed of a CRW along any zonal line is comprised of advection by the
zonal angular velocity, self-induced counter-propagation (20) and an interaction term
(14). As wavelength decreases the interaction term decreases most rapidly and the
CRW can only support meridional displacements across a region where its self-induced
phase speed, ci(φ, θ) = U − Pyvi/(mPi), hardly varies. In the troposphere where Py is
approximately constant with height (Fig. 1(d)), the displacement structure of CRWs
will tend to be coherent along U surfaces. At the tropopause Py is much greater,
counteracting the greater zonal flow there, so the upper CRW can support structure
along the tropopause too. Close to the ground, meridional displacements result in
horizontal advection of θ , and air parcels must cross basic-state θ surfaces. However,
away from boundaries a displaced air parcel will tend to move parallel to basic-
state isentropic surfaces, rather than across them (Hoskins 1974). Therefore, CRW
meridional displacement structures tend to show coherence along θ surfaces in the upper
troposphere.

The PV structure of the upper CRW on the Z2 jet follows U contours in the
lower troposphere and θ contours in the upper troposphere (Fig. 11(a)), resulting in
the strong poleward slant. For the Z1 jet the U contours are horizontal at the latitude
of maximum baroclinicity, so that the CRWs only slant in the upper troposphere in
sympathy with isentropic surfaces (e.g. Fig. 7(b)). The PV anomaly extremum at the
tropopause naturally follows the tropopause slope equatorwards (Fig. 1(d)) above the
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Figure 11. CRW structures of the fastest-growing modes on the Z2 jet at m = 11 (left panels) and m = 12 (right
panels). Note that the m = 11 mode belongs to branch 1, while the m = 12 mode belongs to branch 2. Contouring

as for Fig. 3.

maximum boundary wave activity of the lower CRW. The influence of the basic state is
particularly clear for the CRW structures of the m = 12 mode from branch 2 growing
on the Z2 jet (Figs 11(b) and (d)). Both CRWs for this branch shift polewards with
wave number. The PV of the upper CRW slants with isentropic surfaces in the mid-
troposphere but follows the U contours in the lower troposphere at higher latitudes
where the shear is anticyclonic (Fig. 8(a)).

4. CONSEQUENCES OF CRW STRUCTURES FOR GROWING BAROCLINIC WAVES

(a) The phase-locking configuration
An important result of Part II, was that the CRWs of the Charney model can only

phase-lock in a hindering configuration which corresponds to a large westward phase
difference between the upper and lower CRWs (π/2 < ε+ < π ). In the limit of zero
wavelength the CRW phase difference is π/2 but, as wavelength increases, the CRWs
must lock in an increasingly hindering configuration. Similar behaviour was noted for
the Z1 jet, which has no surface meridional shear, but helping behaviour was seen for
the short-wave branch 1 modes on the jet with additional cyclonic shear (Z2). The
following argument explains how surface shear enables the short waves to lock in a
helping configuration.

In the lower troposphere, the zonal flow increases roughly linearly with height,
U(y, z) = U(y, 0) + 9z/a, as in the Charney model. Vital to the short-wave limit is
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the fact that the zonal flow at a Rossby scale height above the ground varies linearly
with wavelength while the westward counter-propagation rate of the upper CRW varies
as wavelength squared (or higher order), so that c2

2 → U2 as 1/m → 0. In addition, the
lower CRW becomes dominated by its boundary θ signature so that c1

1 → U(y1, 0) +
α9/m, where α is a dimensionless constant depending only on the surface meridional
wind induced by the θ-anomalies of the lower CRW (α = −γ 1

1 /9 = [−θy/9]v1/θ1 ≈
[f θ/g]v1/θ1). In the Charney model, phase-locking occurs when cos ε+ = 0 because
the upper CRW is focused at the Rossby scale height αa/m, so that c2

2 ≈ U2 ≈ c1
1.

In the Z1 case the vertical wind shear varies with latitude (the jet is confined),
but the latitude of the jet axis does not vary with height because there is no surface
meridional shear. The CRWs of branch 1 are centred on the jet axis and the boundary
wave activity of the lower CRW has a tighter structure than the jet itself (an important
feature discussed further in the next section). A meridional shift of the upper CRW’s
home-base would result in a smaller shear between them and weaker interaction due to
the increased separation. Both effects would tend to make cos ε+ more negative (23)
relative to the case of no meridional displacement—a more ‘hindering’ configuration.
Thus, all CRWs are expected to be hindering when phase-locked if the jet axis does not
slant.

However, wave numbers m � 13 for branch 1 on the Z1 jet are found to be in
a helping configuration (Fig. 6(b)). This is thought to be spurious and due to the
fact that these modes are adversely affected by the model’s vertical resolution. In
the Charney model the upper CRW’s wave activity asymptotes towards the ground as
the wavelength approaches zero but in the discretized model the level spacing prohibits
this and as a result the coupling rapidly becomes weaker resulting in a rapid drop in
growth rate (Fig. 6(a)). Also, the CRW counter-propagation weakens but the upper
CRW cannot move closer to the lower boundary where the zonal flow is weaker (as
happens in the Eady model where the vertical separation of the CRWs is fixed), resulting
in c2

2 − c1
1 > 0, and therefore cos ε+ > 0 (23).

In the Z2 case, a barotropic wind shear, which is cyclonic across the latitude of
maximum baroclinicity (Fig. 8(a)), is superposed on the Z1 jet. The shear between
the CRWs, U2 − U1, increases relative to its value in the absence of surface shear
(compare Figs. 6(d) and 9(d)) because the global integrals (21) are weighted by the
displacement amplitudes of each CRW and the displacement structure of the upper
CRW lies equatorward of the lower CRW at every level. Therefore, in the short-
wave limit c2

2 − c1
1 becomes positive, rather than zero, resulting in cos ε+ > 0 (23)—a

‘helping’ configuration. It is natural that the displacements of the upper CRW should lie
equatorward of the lower CRW’s displacements at all levels because the displacement
structures of both CRWs slant polewards with the U surfaces and the upper CRW is
focused above the lower CRW.

(b) Horizontal momentum fluxes
An important feature of the general circulation of the atmosphere is that baroclin-

ically growing eddies possess horizontal momentum fluxes that tend to be up-gradient,
i.e. towards the latitudes where the zonal flow is greater, implying that the horizontal
structure of eddies must be tilted downshear. McIntyre (1970) considered the changes to
NMs that occur when the basic state of the Eady model is perturbed by non-zero interior
PV gradients and barotropic meridional shear. He showed that these perturbed Eady
NMs are indeed tilted downshear in the sense expected from differential advection, but
then notes that, ‘the result and its physical interpretation are not really obvious without



1416 J. METHVEN et al.

the (perturbation) analysis, since the unstable mode involves a subtle balance between
advection and propagation effects.’ Similar results were obtained by Stone (1969) for the
two-layer model. Here, an explanation for the direction of momentum fluxes is sought
in terms of CRW structures.

(i) Vertically integrated momentum fluxes. The zonal-mean zonal flow in isentropic
coordinates evolves according to the equation (from Eq. (3.9.7) of Andrews et al. 1987):

r ut + rv

{
(u cos φ)φ
a cos φ

− f

}
+ rQ uθ = ∇ · F

cos φ
− (r ′u′)t + rX, (27)

where Q is heating, X represents frictional effects and F is the generalized Eliassen–
Palm flux with components F (φ) = −cos φ (rv)′u′ and F (θ) = (ga)−1p′M ′

λ − cos φ
(rQ)′u′. The pseudomomentum conservation law reduces for adiabatic, frictionless,
small-amplitude disturbances to:

∂

∂t
{R + G} + ∇ · F = 0, (28)

where R = 1
2r Qyη

′2, G = −cos φ r ′u′ + r θy cos φη′u′ δb = GI +Gb (cf. (4))∗.
Integrating (28) vertically and using the result that the EP–flux on the lower boundary
can be re-interpreted as the rate of change of boundary pseudomomentum (appendix C
of Magnusdottir and Haynes 1996) we find:∫ ∞

θb

(F (φ) cos φ)φ
a cos φ

dθ − F (θ)|θb +
∫ ∞

θb

∂GI

∂t
dθ = −

∫ ∞

θb

∂

∂t
{RI + Rb +Gb} dθ.

(29)
Since the left-hand side of (29), divided by cos φ, equals the vertical integral of the

right-hand side of (27) with X = 0, it is clear that the barotropic component of the flow
accelerates where the vertical integral of ∂(RI + Rb + Gb)/∂t is negative.

Growing normal modes maintain a fixed structure while amplitude increases ex-
ponentially at rate σ+. Since R is quadratic in displacement, we have ∂R/∂t = 2σ+R.
Therefore, (29) shows that the acceleration of the barotropic flow depends on the vertical
integral of RI plus the boundary pseudomomentum density. The boundary density is
dominated by Rb, which is negative given that θy < 0, and the vertical integral of RI

is everywhere positive, since predominantly Qy > 0 in the interior. Following Held and
Andrews (1983) (their section 2) consider slowly growing modes with weak boundary
wave activity. In this case, RI dominates so that the RHS of (29) is negative, implying
that there is vertically integrated EP-flux convergence (or, equivalently, momentum-flux
divergence), assuming that the GI term in (29) is small. The wave activity density, RI,
is greatest on the jet, since Qy is largest there, so that (27) implies that the barotropic
component of the jet will decelerate.

However, Held (1985) showed that the global pseudomomentum of a growing
normal mode is zero. Consequently, if the boundary wave activity is focused under the
jet, but the interior wave activity is spread more widely along surfaces of constant U , it
must be the case that the right-hand side of (29) is positive at the latitude of maximum
Rb and negative to either side so that the global integral is zero. In this case, the jet
would tend to accelerate as a result of vertically integrated momentum-flux convergence
there (Fig. 12(a)).

∗ The definitions for F in Andrews et al. (1987) and pseudomomentum density from Magnusdottir and Haynes
(1996) have been divided by a so that R/r equals pseudomomentum per unit mass (m s−1).
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Figure 12. Schematics of jet structure and implications for CRW displacement structure and momentum fluxes
in three cases: (a) broad jet (r > 1) with no surface meridional shear, (b) broad jet with cyclonic surface shear and
(c) narrow jet (r < 1) with no surface shear. The steering surface U = cr outlines the jet shape and the tropopause
(tpp) is also drawn. Rb denotes boundary wave-activity density and has a narrow structure relative to jet width
in (a) and (b). The dotted line indicates the displacement structure for the lower CRW of a fast-growing NM.
The hatched regions highlight where boundary wave-activity density dominates the vertical integral of interior
wave-activity density (for the growing NM) such that their sum is negative. This implies that the right-hand side
of (29) is positive (marked by the +) and there is depth-integrated momentum-flux convergence, as indicated by

the arrows.

The tight structure of boundary wave activity relative to the width of the jet is
essential in the argument above. Juckes (2000) developed a theory for the meridional
scale, b, of the meridional displacement structure by considering the Eady problem
modified by a slow variation in θy with latitude, prescribing the width of the jet.
Heuristic arguments and asymptotic expansions led to the result b ∼ r1/2 where r is
the jet width normalized by the Rossby radius of deformation. Therefore, when r > 1
we expect b < r , i.e. the wave structure is narrow relative to the jet width. This is indeed
the regime relevant to the Z1 and Z2 jets because they are broad relative to the Rossby
radius. Figure 12 illustrates the generic structure expected for the lower CRW of a fast-
growing mode and its implications for the vertically integrated momentum flux in cases
of broad and narrow jets and on the addition of surface meridional shear. The general
rule that growing NMs have upgradient momentum fluxes on broad jets (r > 1) but
downgradient fluxes on narrow jets was shown by Held and Andrews (1983) and Fig. 12
illustrates why this occurs (although some exceptions exist).

(ii) Momentum fluxes along isentropic surfaces. The tendency for the air-parcel
displacement structures of CRWs to be coherent along U lines (when the jet is broad,
r > 1) has implications for the horizontal momentum fluxes of NMs on isentropic
surfaces in addition to the vertical integral.

First, consider the structure of CRWs on broad jets without a slanting axis (e.g.
Z1). The boundary displacements of the lower CRW are focused close to the latitude of
maximum baroclinicity (|θy |) with scale smaller than the jet width (e.g. Fig. 2(d)). Pole-
ward meridional displacements near the ground are associated with positive θ-anomalies
and negative interior PV anomalies (P1). The negative anomalies extend upwards on
the jet axis to the curve P1 = 0, which approximately coincides with the home-base
of the orthogonal upper CRW, where U = U2 (Fig. 3). The coincidence is exact by
construction for CRWs obtained by the home-base method. Since U1 < cr <U2 for
growing modes, the negative PV anomalies must cross the steering level. The tendency
for meridional displacements to be coherent along U contours, as argued in section 3(d),
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Figure 13. Illustrations of growing normal-mode (NM) eddy shape resulting from the westward phase difference
between its upper (U) and lower (L) CRW. On a jet without surface meridional shear (panels (a) and (c)), both
CRWs are centred on the jet axis but the circulation anomalies of the lower CRW are meridionally confined by its
negative PV flanks. On adding cyclonic surface shear (panels (b) and (d)), the upper CRW’s circulation anomalies
shift polewards relative to those of the lower CRW. The sign of the NM’s horizontal-momentum flux and its

convergence are determined by the resultant eddy tilt.

results in negative PV anomalies extending along the curveU = cr (e.g. Fig. 3(d)). Since
the jet is broad, the negative PV flanks slant outwards from the surface activity to the
tropopause where the PV gradient is larger and, therefore, the same displacement can
advect a stronger PV anomaly. The negative PV anomalies oppose the positive bound-
ary θ-anomaly such that the v-structure of the lower CRW (Fig. 3(c)) falls much more
rapidly with height than the upper CRW (Fig. 3(a)) and is confined meridionally by its
negative PV flanks.

Figure 13(a) depicts the horizontal circulation induced by each CRW. The two
CRWs are centred on the jet axis but the circulation anomalies of the lower CRW are
more confined. Furthermore, the upper CRW must be positioned to the west of the lower
CRW for baroclinic growth. Since CRWs are untilted, in isolation each is associated
with zero horizontal momentum flux. However, when combined the resulting eddy must
tilt down-shear giving rise to momentum fluxes which converge on the jet axis (i.e. up-
gradient fluxes). The momentum-flux structure for the fastest-growing wave number 6
NM is shown in Fig. 7(b) of Simmons and Hoskins (1977) for a jet very similar to Z1.
They noted that there is a poleward bias in the NM momentum fluxes that was shown by
Hollingsworth et al. (1976) to result from spherical geometry. This bias can be viewed
as a distortion of the circulation anomalies of each CRW so that they are broader towards
the equator (but still untilted).

The existence of PV flanks associated with the lower CRW can be deduced from
previous results in the literature. McIntyre (1970) perturbed the Eady basic state with
the weak jet, U = z + µ sin2 πy (µ < 1), and showed that the meridional θ-fluxes of
the NM (his Fig. 5) are more meridionally confined at the ground than at the upper lid.
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Davies et al. (1991) examined baroclinic growth on jets in a semi-geostrophic model
with uniform interior PV and a rigid lid (similar to the Eady model). The jets were
sufficiently strong that the steering surface U = cr intersected the upper lid either side
of the jet, although still broad in the sense that r > 1. Their Fig. 6(a) clearly shows
that NM θ-fluxes on the ground are confined close to the jet axis, but on the upper lid
they extend out across the ‘critical lines’ U = cr. Although displacements in the interior
are not associated with PV anomalies because the interior PV gradient is zero in these
models, on the boundaries poleward advection results in positive θ-anomalies which are
equivalent to positive boundary PV anomalies at the ground and negative PV anomalies
at the lid (Bretherton 1966a). The displacements at the upper lid associated with the
flanks of the lower CRW result in negative PV anomalies either side of the jet and also
broaden the positive NM θ-flux, v′θ ′ = a1a2 sin ε{v2θ1 − v1θ2} (from Eq. (20) in Part I),
since θ1, v1, v2 > 0 but θ2 < 0. At the ground the upper CRW has no displacements
(θ2 = 0) so that the θ-flux is confined close to the jet axis where θ1 > 0. The flanks of
the lower CRW at the upper lid act as the analogue of the negative PV flanks at the
tropopause in more realistic models (e.g. the lower CRW shown in Fig. 3(d)).

When cyclonic surface shear is added (the Z2 jet), the displacement structures of
both CRWs are clearly coherent along U -surfaces, especially for short waves (Fig. 11)
where the interaction strength is weaker and, therefore, has less impact on the propaga-
tion against the flow. The interior PV of the lower CRW is negative below the steering
level and in the flanks, which lie just above the steering level either side of the jet.
Therefore, the v-structure of the lower CRW is again more confined than that of the
upper CRW, both vertically and meridionally (Fig. 10).

The poleward slant of the upper CRW’s displacements also has ramifications.
Its meridional displacements are now non-zero at the ground either side of the maximum
boundary wave activity of the lower CRW. On the equatorward side this results in a
negative θ-anomaly which opposes the positive interior PV above resulting in almost
zero induced wind at the boundary there (φ < 40◦N in Fig. 10(a)). On the poleward side
the upper CRW gains a weak positive θ-anomaly which induces circulation in the same
sense as the interior PV anomalies slanting overhead. The net effect is that the upper
CRW’s v-structure is upright, but shifted polewards of the lower CRW’s v-structure at
every level.

The schematic in Fig. 13(b) depicts the circulation anomalies of the two CRWs
under the influence of cyclonic shear. Again, the lower CRW is more meridionally
confined but, in addition, the upper CRW has been shifted polewards. Although each
CRW has zero momentum flux in isolation, when combined with the upper CRW to
the west, the resulting eddies tilt from north-west to south-east, which gives rise to an
equatorward momentum flux and convergence where the barotropic component of the
zonal flow is greatest.

Similar behaviour can be deduced for the model of Davies et al. (1991) when
uniform barotropic cyclonic shear is added. Their Fig. 6(b) shows how the NM θ-fluxes
at the ground are confined close to the latitude of maximum baroclinicity but shift
slightly equatorwards, reflecting the influence of the upper CRW’s θ-anomaly at the
ground. In contrast, the NM θ-fluxes at the upper lid are much broader (extending
across the steering lines) and are strongly biased towards the poleward side, reflecting
the θ-anomalies associated with the flanks of the lower CRW and the poleward shift of
the upper CRW’s wind anomalies.

Importantly, Davies et al. (1991) show that perturbations have symmetry with
respect to change in the sign of surface shear in their semigeostrophic model, such
that they are reflected about the jet axis. Thus we expect that anticyclonic shear



1420 J. METHVEN et al.

encourages an equatorward slant in the displacement structures of CRWs (especially
when interaction strength is weak), inducing an equatorward shift in the upper CRW’s
v-structure relative to the lower CRW and, therefore, south-west to north-east tilt to
the resulting eddies, and a poleward momentum flux. Again, this flux would be in the
direction of increasing barotropic wind, i.e. up-gradient.

The up-gradient momentum fluxes are a characteristic of baroclinic growth.
Barotropic growth results in down-gradient momentum fluxes, as can be seen from the
following CRW argument. Consider a strong eastward flow positioned to the south of
a weaker eastward flow, separated by a linear shear zone with positive vorticity (the
Rayleigh problem). CRW-1 propagates eastwards on the northern edge of the strip where
the vorticity gradient is negative (Qy |1 < 0) while CRW-2 propagates westwards on the
southern edge where the vorticity gradient is positive (Qy |2 > 0). Clearly U2 − U1 > 0
satisfying the CRW-form of the Fjørtoft condition for instability. CRW theory tells us
immediately that, in order to grow, CRW-2 must be shifted to the west of CRW-1 and,
therefore, that barotropically growing eddies must have a south-west to north-east tilt,
giving rise to a northward momentum flux towards the weaker zonal flow. A further
corollary is that the momentum fluxes associated with baroclinic growth must also
contribute to energy conversions that are characteristic of barotropic decay and could
be interpreted as slowing baroclinic growth—this was referred to as the ‘barotropic
governor effect’ by James (1987).

5. CONCLUSIONS

The CRW perspective on baroclinic instability has been generalized to describe
the linearized dynamics of disturbances to steady zonally-symmetric flows governed
by the adiabatic frictionless primitive equations on the sphere. The evolution of any
disturbance that can be described by the superposition of a growing normal mode (NM)
and its decaying complex conjugate can alternatively be viewed as the zonal propagation
and interaction of a pair of untilted CRWs. The only approximation required is that a
truncated form of pseudomomentum and pseudoenergy should be globally conserved,
which focuses attention on Rossby waves. The global integral of the terms neglected
during the truncation was about 3% of the pseudomomentum of a CRW (for the fastest-
growing mode).

The CRWs are obtained objectively from the NM by defining them to be zonally un-
tilted structures, and then imposing the constraints that they are orthogonal with respect
to pseudomomentum and eddy energy production. They can be viewed as components of
a Hamiltonian system with separate zonal positions and (pseudo)momenta. Instability
is possible when the CRWs have opposite signs of pseudomomentum and their self-
induced phase speeds are sufficiently similar that modification of zonal propagation
by interaction can achieve phase-locking (condition (51) of Part I quantifies how simi-
lar). These are the same conditions as described by Hayashi and Young (1987) for the
shallow-water model and Sakai (1989) for the ageostrophic two-layer model.

The evolution of these ‘orthogonal CRWs’ can be described to a good approxi-
mation by the zonal propagation and interaction characteristics of the untilted wave
structures at only two locations in the meridional plane, called their ‘home-bases’, even
though the NMs are complicated three-dimensional structures and the basic state varies
in latitude and height. Discussion of their phase-locking and mutual growth rate re-
duces to consideration of their PV (and boundary θ) structures and v induced by each
CRW at the two home-bases, as well as U and Qy (see (5)) at these two locations.
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Instability is only possible if Qy has opposite signs at the home-bases and if U is greater
at the home-base where Qy > 0. These are CRW forms of the Charney and Stern (1962)
and Fjørtoft (1950) necessary conditions for baroclinic instability that are valid for the
primitive equations, to the extent that the truncated pseudomomentum and pseudoenergy
are conserved.

Since poleward advection near the ground forms both a positive θ-anomaly and
negative interior PV-anomaly (unless the interior PV gradient is zero), the lower CRW
must always have interior PV anomalies that act to oppose its boundary PV anomalies
in the induction of meridional wind and confine its wind structure closer to the ground.
The negative PV-anomaly extends up to the home-base of the upper CRW (since the
lower CRW’s PV goes to zero there) and thus crosses the steering level. Therefore, it
is important to associate part of the interior PV, especially in the lower troposphere,
with the boundary θ-wave when attempting to attribute baroclinic development to the
interaction of upper and lower CRWs. Hoskins and Berrisford (1988) and Davis and
Emanuel (1991) have also shown that lower-tropospheric PV anomalies associated with
non-conservative effects can be important in the interaction. Positive PV is produced
in the warm sector during frontal occlusion, which induces cyclonic circulation adding
to that associated with the positive θ-anomaly. Note that the occlusion process always
results in interior PV production, even in dry models, where the surface θ-anomalies
are dissipated (with cancelling effects on the strength of circulation anomalies) but that
latent-heat release from condensation associated with large-scale ascent enhances the
interior PV production rate in the warm sector (e.g. Fig. 13 of Ahmadi-Givi et al. 2004).

Note that it is important that P ′/P is used to examine the PV structure of CRWs
rather than the Ertel PV perturbation, P ′. P ′/P is proportional to QGPV under QG
scaling and its structure more closely resembles wave-activity density. P ′ gives mis-
leading weight to perturbations of the tropopause which is not reflected in the induced
circulation anomalies. This suggests that ln P would generally be a better diagnostic
in the extratropics than P . Also, CRWs of realistic jets with synoptic wavelengths, or
shorter, clearly resemble Charney modes much more closely than Eady modes, since the
mid-tropospheric PV gradient is crucial to their growth and phase speeds.

For broad jets without a slanting axis (e.g. Z1), CRW behaviour for wavelengths
shorter than the fastest growing NM (m> 7) resembles that of the Charney modes. As
wavelength decreases, interaction weakens and the westward self-propagation rate of the
upper CRW becomes negligible compared with advection by its home-base wind, so that
phase-locking is achieved when c2

2 ≈ U2 ≈ c1
1. The phase-locked angle ε+ tends to π/2

(from (23)). Conversely, as wavelength increases, the westward self-propagation rate of
the upper CRW becomes stronger relative to eastward advection at its home-base, so that
the CRW interaction must increasingly ‘hinder’ the self-propagation for phase-locking
to occur. This is achieved by an increasing phase difference between the CRWs. Thus
the CRWs must be in a hindering configuration (π/2 < ε+ < π ) at all wavelengths.

Consequently, when the jet axis is almost vertical, cases where an upper-level
positive PV-anomaly phase-locks above a positive θ-anomaly on the boundary (almost
no westward tilt) cannot be described by the evolution of a single CRW pair. Such cases
could be described by the aggregation of CRWs in wave packets (Davies and Bishop
1994), or by the dynamics of the ‘continuous spectrum modes’ that are neutral but can
result in finite-time baroclinic growth (Farrell 1982). Their interaction with the CRWs
of the discrete (unstable normal mode) spectrum is under investigation.

The displacement structures of CRWs generally slant in sympathy with surfaces of
constant U if the jet is broad relative to the boundary displacement structure, which
occurs if the jet is wider than the Rossby radius (Juckes 2000). This has important
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implications for the structure of baroclinic waves growing on broad jets. Pseudomomen-
tum conservation was used to show that vertically integrated EP-flux divergence only
occurs at latitudes where boundary pseudomomentum density dominates the vertical
integral of interior pseudomomentum density. Therefore, momentum-flux convergence
and acceleration of the barotropic component of the jet occurs above the maximum in
boundary wave activity of the NM and compensating divergence occurs on either side
(see Fig. 12). Moreover, the slant of the lower CRW displacement structure around the
flanks of the jet is associated with negative PV anomalies there. The wind anomalies
induced by the lower CRW are meridionally confined by its negative PV flanks. Con-
sequently, the horizontal momentum fluxes of baroclinically growing eddies typically
converge on the jet axis at all levels (see Fig. 13).

If additional cyclonic barotropic shear is imposed on a jet (e.g. Z2), it results in pole-
ward slanting U surfaces and encourages a poleward slant in CRW displacement struc-
tures. Consequently, on horizontal surfaces the displacement anomalies of the upper
CRW lie equatorward of those of the lower CRW. This enhances the difference between
the ‘home-base winds’ so that c2

2 − c1
1 can become positive as wavelength decreases,

enabling phase-locking of short waves in a ‘helping’ configuration (0 < ε+ < π/2).
Due to the poleward slant, the maximum of interior wave activity is displaced pole-

wards of the boundary wave activity so that there is vertically integrated momentum-
flux convergence on the equatorward side of the jet maximum and divergence on the
poleward side, accelerating the barotropic component of the jet. Also, the meridional-
wind anomalies of the upper CRW lie poleward of those of the lower CRW at all levels.
Growing eddies described by the CRW pair must tilt from north-west to south-east, and
the horizontal momentum flux is negative on all levels.

Therefore, CRW theory provides an explanation for why eddies growing baro-
clinically on broad jets typically tilt down-shear in the horizontal and, therefore, have
up-gradient momentum fluxes (Stone 1969; McIntyre 1970; Held and Andrews 1983).
The crucial ingredients are that the displacement structures of CRWs tend to be coherent
along U -surfaces, the lower CRW has a narrow structure at the ground (relative to jet
width) but must have negative interior PV flanks following the steering surface around
the jet, and the upper CRW must be shifted to the west of the lower CRW for growth.
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