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We have recently reported on the use of formamide 1, 
prepared via Bryce-Smith/Gilbert photoamination of 
benzene, as a precursor for the enantioselective synthesis 
of (-)-fortamine.1,2 The synthetic potential of this crystal-
line compound has now been further realized, forming 
the foundation for a synthesis of (±)-conduramine E 
(Figure 1).3 

 
Figure 1 Proposed synthesis of conduramine E. 

Thus, beginning from formamide 1,1 bromonium ion 
induced cyclisation was investigated to install the rela-
tive stereochemistry between the adjacent carbon-
nitrogen and carbon-oxygen bonds required for con-
duramine E.  However, contrary to expectation, treat-
ment of 1 with two equivalents of N-bromosuccinimide 
(NBS) delivered a 49% yield of oxazolidinone 2, pre-
sumably via hydration of the intermediate 3 and oxida-
tion of 4 (Scheme 1). 

 
Scheme 1 Oxidative cyclisation of 1. Reagents and conditions: (i) 
NBS (2 eq.), CH2Cl2, 0 ˚C (49%). 

In an effort to improve the yield of this conversion we 
examined a two-step procedure (Scheme 2). Initial 

treatment of 1 with polymer supported Br3
- afforded 

formate 5, presumably again via 4.4 It is proposed that 
the acidic nature of this reagent is sufficient to cause N-
protonation of 4, driving its ring-opening to give 5. It is 
noteworthy that, in the presence of 2,6-lutidene, amidi-
nium ion 7 was isolated, presumably via 6. The structure 
of 7 was confirmed by X-ray crystallographic analysis.5 
In the absence of protonation, 4 would be expected to 
rearrange to the thermodynamically more stable forma-
mide 6 with subsequent cyclization to afford 7.6 Overall, 
this transformation achieves the same stereochemical 
outcome as a Woodward-Prevost dihydroxylation.7 Hy-
drolysis of the formate 5 afforded an amino-alcohol that 
was directly protected with triphosgene to give the de-
sired urethane 2 in an overall, purified yield of 86% from 
1. 

  
Scheme 2 Optimised synthesis of 2. Reagents and conditions: (i) 
polymer supported Br3

-, CH2Cl2, RT; (ii) 1M HCl/MeOH; (iii) 
triphosgene, pyridine, CH2Cl2, (86% from 1); (iv) polymer supported 
Br3

-, 2,6-lutidene, CH2Cl2, RT (68%). 

Treatment of 2 with DBU effected elimination of HBr to 
afford diene 8 in 90% yield (Scheme 3).  At this stage, 
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synthesis of conduramine E required a regio- and stereo-
selective dihydroxylation to give 9. Treatment of 8 under 
modified VanRheenen conditions resulted in dihydroxy-
lation exclusively on the exo-face with a 4:1 mixture of 
regioisomers (9:10) in 55% combined yield.8 Sharpless 
asymmetric dihydroxylation reagents are usually ineffec-
tive at kinetic resolution but can be regioselective in 
diene dihydroxylation.9  Indeed, when we treated 8 with 
ADmix-β for 5h between 0 and -5 ˚C, 9 was obtained as 
a single regio- and stereoisomer in 76% yield.10 The 
shape of the bicyclic ring system makes the exo-
stereoselectivity unsurprising but the high regioselectiv-
ity is more difficult to rationalize. Unfortunately, kinetic 
resolution was ineffective with only 18% ee being 
achieved at 40% conversion with ADmix-β. 

 
Scheme 3 Regio and stereoselective dihydroxylation of 8. Reagents 
and conditions: (i) DBU (1.6 eq.), toluene, RT (90%); (ii) ADmix-β, 
MeSO2NH2, tert-BuOH/H2O (76%) (9:10 100:0) or K2OsO4.2H2O, 
NMO, H2O/acetone/tert-butanol (1.0:0.75:1.0) (55%) (9:10 4:1); (iii) 
TFA, reflux (76%). 

During a study directed toward the synthesis of (+)-
conduritol E, the meso-diene 12 was effectively desym-
metrised to give 13 (85% ee) by treatment with ADmix-
β whilst, as expected, ADmix-α afforded its enantiomer 
(Scheme 4).9,11 

 
Scheme 4 Takano’s desymmetrisation of 12. Reagents and conditions: 
ADmix-β, MeSO2NH2, tert-BuOH/H2O (1:1) (85%). 

To examine the effect of the cinchona alkaloid ligand on 
the outcome of the dihydroxylation of 8, its reaction with 
ADmix-α was carried out but the same product (9) was 
obtained (68% yield). Thus, as suggested by the reaction 
under VanRheenen conditions, the selectivity is innate to 
the structure of 8. Calculating the transition state ener-
gies in the exo– approach of OsO4–NH3, as a model, to 
either double bond of 8 showed that leading to 9 to be 
0.9 kcal mol–1 lower in energy than that leading to 10 
(Figure 2). Whilst no firm conclusions can be made on 
the basis of this small difference in energies, it is consis-
tent with the observed ratio of products obtained in the 
room temperature VanRheenen dihydroxylation.12 

 

 
Figure 2 Calculated transition state models leading to 9 and 10 (Gaus-
sian 03); DFT used with B3LYP. LANL2DZ basis set for Os, 6-
31+G* for other atoms. 

Deprotection of 9 was effected by refluxing with TFA to 
afford 11 in 76% yield,13,14 which has been previously 
reported by Prinzbach et al. as an intermediate in their 
synthesis of (-)-conduramine E.3a  For completeness, 
utilising known conditions, 11 was hydrolysed with 
Ba(OH)2 to give conduramine E then converted to its 
tetraacetyl derivative and its 1H NMR spectrum found to 
be in accord with data reported by Chida et al.3b  

In conclusion, we have further demonstrated the syn-
thetic utility of crystalline formamide 1, obtained by 
photoamination of benzene, as a precursor for the regio- 
and diastereocontrolled synthesis of natural products 
possessing polyhydroxylation. 
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